
Scientists Publish New Model for Communication in Plant Cells
May 9, 2018 |
A study led by the University of Maryland explains how plants communicate within cells using a protein that closely resembles an animal protein that has a role in communication between nerve cells.
While plants lack a true nervous system, previous studies have shown that plants need these proteins, called glutamate receptor-like proteins (GLRs), to do important things such as mate, grow, and defend themselves against diseases and pests. In the study, researchers working with pollen cells from Arabidopsis thaliana found that these GLR proteins form the basis of a complex communication network inside individual plant cells.
The similarities between the animal nerve proteins (glutamate receptors) and the GLR plant proteins suggest that the two proteins date back to a common ancestor—a single-celled organism that gave rise to both animals and plants. Research findings suggest that GLRs rely on another group of proteins, called "cornichon" proteins, to transport GLRs to different locations in plant cells and to regulate activity of the protein within each cell. The study found that with the help of cornichon proteins, GLRs act as valves that carefully manage the concentration of calcium ions—a vital aspect of many cell communication pathways—within various structures inside the cell.
For more details, read the news release from the University of Maryland.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Advances in Crop Science Critical in Combating Effects of Climate Change
- New Sunflower Seeds Improve Yields in Tanzania
- Scientists Publish New Model for Communication in Plant Cells
- USDA Proposes New National Bioengineered Food Disclosure Standard
- Rice with Triple-stack Traits Shows Better Yields Amidst Abiotic Stresses
- Radiocarbon-based Study Suggests Wheat Introduced to China in 2600 BCE
- Australian OGTR Invites Comments on GM Wheat Field Trial
- Biotech Experts Push Forward Bill on Modern Biotech in PH
- New Analysis Reveals Organic Agriculture Less Productive than Conventional Agriculture
-
Research Highlights
- Scientists Reveal that a MAPK Signaling Pathway Controls Grain Size
- SlbZIP1 Regulates Biotic and Abiotic Stress Tolerance in Tomato
- Overexpression of Arabidopsis Gene Enhances Vitamin B6 Content in Potato
-
Beyond Crop Biotech
- Rose Genome Provides New Insights into the Domestication of Modern Roses
-
Announcements
- Asian Short Course on Agri-biotechnology, Biosafety Regulation, and Communication
-
Plant
- CRISPR- Mediated Mutagenesis on Duplicated Loci in Soybean
- CRISPR-Cas9 System Used to Develop Pink Tomatoes
- Rapeseed with Increased Oleic Acid Generated through CRISPR
- Research Team Combines Microspore Technology with CRISPR-Cas9
-
Read the latest: - Biotech Updates (April 30, 2025)
- Gene Editing Supplement (April 30, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet