
Rose Genome Provides New Insights into the Domestication of Modern Roses
May 9, 2018 |
A study conducted by a multinational team and published in Nature Genetics reveals a new, detailed breakdown of the modern rose genome. This could help growers improve traits such as pest and drought resistance, and boost the vase life of cut stems, researchers said.
The new map is based largely on the genome of a rose known as "Old Blush" or Rosa chinensis, introduced to Europe from Asia in the 18th century. With its 36,377 genes, the Old Blush is considered one of the main ancestors of today's tens of thousands of rose cultivars from some 200 known, wild species. The major contribution of Old Blush to the creation of modern varieties is the trait of repeat flowering.
The rose genome comprises 36,377 inferred protein-coding genes and 3,971 long non-coding RNAs. Annotation assessment identified 96.5% complete gene models and analyses identified 93.5% complete genes. On the basis of transcriptomic data from pooled tissues, 207 miRNA precursors were predicted, transposable elements spanned 67.9% of the assembly, and 50.6% were long-terminal-repeat retrotransposons.
For more details, read the open-access paper in Nature Genetics.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Advances in Crop Science Critical in Combating Effects of Climate Change
- New Sunflower Seeds Improve Yields in Tanzania
- Scientists Publish New Model for Communication in Plant Cells
- USDA Proposes New National Bioengineered Food Disclosure Standard
- Rice with Triple-stack Traits Shows Better Yields Amidst Abiotic Stresses
- Radiocarbon-based Study Suggests Wheat Introduced to China in 2600 BCE
- Australian OGTR Invites Comments on GM Wheat Field Trial
- Biotech Experts Push Forward Bill on Modern Biotech in PH
- New Analysis Reveals Organic Agriculture Less Productive than Conventional Agriculture
-
Research Highlights
- Scientists Reveal that a MAPK Signaling Pathway Controls Grain Size
- SlbZIP1 Regulates Biotic and Abiotic Stress Tolerance in Tomato
- Overexpression of Arabidopsis Gene Enhances Vitamin B6 Content in Potato
-
Beyond Crop Biotech
- Rose Genome Provides New Insights into the Domestication of Modern Roses
-
Announcements
- Asian Short Course on Agri-biotechnology, Biosafety Regulation, and Communication
-
Plant
- CRISPR- Mediated Mutagenesis on Duplicated Loci in Soybean
- CRISPR-Cas9 System Used to Develop Pink Tomatoes
- Rapeseed with Increased Oleic Acid Generated through CRISPR
- Research Team Combines Microspore Technology with CRISPR-Cas9
-
Read the latest: - Biotech Updates (April 30, 2025)
- Gene Editing Supplement (April 30, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet