
Seed Weight, Maternally Controlled in Canola
September 26, 2018 |
Researcher Hanzhong Wang from Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences and colleagues primarily use RNA expression analysis to determine the mechanism responsible for seed weight. Results show correlation among pod length, pod wall photosynthetic area, carbohydrate content, and final seed weight. RNA expression is increased in genes related to seed development, cell division, nutrient reservoir, and ribosomal proteins in large seeds. The researchers concluded with seed weight being controlled primarily by the maternal source, specifically the mother's pod size.
For more information, read the article in Plant Biotechnology Journal.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Bill Gates: GMO Seeds Can Help Farmers Adapt to Climate Change
- Kenyan Policy Makers Vouch for Commercialization of Bt Cotton
- Researchers Discover 'Hotspot' Regions in Wheat Genome for High Zinc Content
- Research Confronts "Yucky" Attitudes About GE Foods
- Independent Review of South Australia's Moratorium on GM Crops Now Underway
- Myanmar Recognizes Need for Biotech Research and Regulatory Boost
- Scientists Discover SWEET Genes to Fight Bacterial Blight
- Researchers Expect More Biotech Crops to be Commercialized in Bangladesh
- Survey Reveals UK Public Favors GM Crops
-
Research Highlights
- Development the Inbred Maize lines for Fusarium Ear Rot Disease Resistance
- Expression of Antigen GP5 of PRRS Virus in Tobacco
- Seed Weight, Maternally Controlled in Canola
-
Beyond Crop Biotech
- CRISPR-Cas9 for Drug Addiction Treatment
- Kiwifruit Duplicated Its Vitamin C Genes Twice
-
Plant
- Scientists Determine Structure of Cas13d, a CRISPR Enzyme for RNA Editing
- CRISPR-Cas9 Applied to Identify ToMV Defense Gene in Tomato
- Rice Flowering Gene, Characterized Using CRISPR-Cas9
- Gene-editing Used to Determine Gene Functions for Wheat Grain Traits
-
Read the latest: - Biotech Updates (March 12, 2025)
- Gene Editing Supplement (March 12, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet