
Researchers Discover How Plants Respond to Attacks
August 1, 2018 |
Scientists from the Norwegian University of Science and Technology (NTNU) collaborating with colleagues from Imperial College London and The Sainsbury Laboratory have learned more about how plants defend themselves.
The plant cell wall protects them against various threats. When the cell wall is damaged, the plant tries to minimize the damage and repairs it so the plant is restored to its normal state. Plants respond differently depending on the danger threatening it.
The researchers, led by NTNU Associate Professor Thorsten Hamann exposed thale cress to various injuries to see how the plants would react. They disconnected 27 different genes to observe the effects. Five of the genes were important in maintaining the equilibrium of the cell walls. The experiments provided a basis for identifying multiple enzymes (kinases) and channel proteins involved in the plant's defense mechanisms. A number of genes are involved in producing these substances.
The team's most interesting finding seems to be that two defense systems can act as a kind of backup for each other. Hamann said that when they blocked the plants' immune response, the mechanisms that maintain balance in the cell walls partially compensate for the blockage, and became a kind of reserve defense system.
For more details, read the article in Gemini.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Genetically Modified Rice Can Neutralize HIV
- Biotech Discussed at National Plant Variety Protection Dialogue in Uganda
- Nigeria Registers Biotech Cotton Varieties for Access to Farmers
- USDA-APHIS Releases Assessment Documents of GE Low Gossypol Cotton for Public Comment
- AgResearch Tests GM High Metabolizable Energy Ryegrass
- Experts Review Social and Economic Impacts of Biofortification through Biotech
- Researchers Discover How Plants Respond to Attacks
- Rice with Less Stomata Needs Less Water; Better Suited for Climate Change
-
Research Highlights
- Researchers Find Gene Related to High-Oil Content in Oil Palm
- Differences in Coffee Quality may be Explained by the Gene Expressions in Coffee Bean During Ripening
- Co-Expression of ApGSMT2g and ApDMT2g Enhances Salt Tolerance in Cotton
-
Beyond Crop Biotech
- University of Adelaide Researchers Uncover Barley's Brewing Secrets
- C4 Photosynthesis Gene Discovered in Foxtail Millet
- Transcription Factor Genes Increase Biomass Production in Switchgrass
-
From the BICs
- PABIC Organizes SciCom and Policy Making Lecture
-
Plant
- CRISPR Nucleases Evaluated for Genome Editing in Maize
- Researchers Discover Regulator of Endosperm Development in Rice
- Epigenetic Basis of High Regeneration Ability of an Elite Cotton Genotype Jin668
-
Read the latest: - Biotech Updates (February 12, 2025)
- Gene Editing Supplement (February 12, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet