
Found: Gene that Confers Resistance to Septoria
February 14, 2018Researchers have, for the first time, isolated a gene that will give wheat a natural resistance to Septoria tritici blotch (STB, or Septoria). Septoria is the main leaf disease of wheat in temperate regions and a major threat for wheat production globally, capable of halving crop yields. The disease is caused by the fungal pathogen Zymoseptoria tritici.
The gene, called Stb6, has been known for 20 years, but its mapping and isolation took five years to complete by a research team led by Kostya Kanyuka at Rothamsted Research and Cyrille Saintenac at the National Institute for Agricultural Research (INRA).
Kanyuka said that the Stb6 gene is effective against only a fraction of fungal strains, specifically those that secrete a matching protein, called AvrStb6. The Stb6 protein somehow recognizes this fungal protein, which leads to activation of the defense response in wheat.
For more information about this research, read the Rothamsted Research News.
The Crop Biotech Update is a weekly newsletter of ISAAA, a not-for-profit organization. The CBU is distributed for free to over 23,000 subscribers worldwide to inform them about the key developments in biosciences, especially in agricultural biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Nigeria is Gearing towards Commercializing GM Seeds
- Genetic Trigger Adds Branches to Plants, Could Boost Crop Yields
- Australian OGTR Approves GM Cotton (COT102) and Canola (DHA Canola)
- USDA FAS-GAIN Reports Advancement of Agri-biotech in Bangladesh
- Found: Gene that Confers Resistance to Septoria
- Temperature Resilient Crops Now an "Achievable Dream"
- German Study Analyzes Risk Perceptions of Consumers Regarding GM Crops
- Rice Gene Makes Maize Productive; To Do the Same for Other Crops
-
Research Highlights
- Scientists Conclude Safety of Pseudomonas as Source of Genes for GM Crops
- RTD1 Involved in Tocopherol Biosynthesis and Plant Development in Rice
-
Plant Breeding Innovations
- Researchers Test CRISPR-Cas9 on Red Sage
- OsPKS2 Controls Rice Male Fertility by Regulating Pollen Wall Formation
- TALENs-mediated Editing in Potato via Agroinfiltration
- Scientists Study the Function of OsPT4 in Arsenic Uptake in Rice
-
Beyond Crop Biotech
- Pheromone from Asian Citrus Psyllid that Transmits Citrus Greening Now Identified
- Scientists Sequence Genomes of 60 Citrus Varieties to Draw Up Family Tree and Understand Disease Response
- TcCHS Gene Confers Strong Resistance Against Cotton Aphids
-
Resources
- Science and She Campaign
-
Read the latest: - Crop Biotech Update (August 10, 2022)
- Genome Editing Supplement (August 10, 2022)
- Gene Drive Supplement (July 27, 2022)
-
Subscribe to CBU: - Share
- Tweet