Get updates on COVID-19 research at COVID-19 Resource
Crop Biotech Update

Arabidopsis P3B Confers Temperature Stress Tolerance in Sweet Potato

August 16, 2017

Sweet potato (Ipomoea batatas) is suitable for growth on marginal lands due to its abiotic stress tolerance. However, extreme environmental conditions, including low temperature, significantly affect its productivity. A team of researchers from Korea Research Institute of Bioscience and Biotechnology, Korea University of Science and Technology, Jiangsu Academy of Agricultural Science and other research institutions and universities in South Korea aimed to develop sweet potatoes with enhanced tolerance to temperature stress using P3 proteins.

P3 proteins act as both protein and RNA chaperones to increase heat and cold stress tolerance in Arabidopsis. The team generated transgenic sweet potato plants expressing the Arabidopsis ribosomal P3 (AtP3B). Three lines (OP1, OP30, and OP32) were then selected based on their AtP3B transcript levels.

The OP plants displayed greater heat tolerance and higher photosynthesis efficiency than wild type plants. The OP plants also exhibited enhanced low temperature tolerance, with higher photosynthesis efficiency and less membrane permeability. While the yields of tuberous roots and aerial parts of plants did not significantly differ between OP and WT plants, the tuberous roots of OP transgenic sweet potato showed improved storage ability under low temperatures.

The OP plants developed in this study exhibited increased tolerance to temperature stress and enhanced storage ability under low temperature.

For more information, read the article in BMC Plant Biology.