
CRISPR Helps Clarify the Mechanism Behind Tomato rin Mutants
May 16, 2018 |
Tomato (Solanum lycopersicum) rin mutants completely fail to ripen. These mutants do not produce red pigmentation, soften, or induce an ethylene burst. Therefore, RIN has long been believed to function as a major regulator for the induction of ripening. The team of Yasuhiro Ito from the National Agriculture and Food Research Organization in Japan aimed to contradict this concept of RIN function and show fruit ripening induction in the absence of RIN.
The team first developed RIN-knockout tomato mutants using CRISPR-Cas9. The resulting mutants did not exhibit repressed initiation of ripening and the mutant fruits actually showed moderate red coloring. Moreover, inactivation of the mutant allele in rin mutants partially restored the induction of ripening.
RIN is not required for the initiation of ripening in tomato. Further analysis also found that the rin mutant does not actually have a null mutation, but has a gain-of-function mutation. This then produces a protein that represses ripening.
For more information, read the full article in Nature Plants.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Report: GM Crops to Dominate Global Agri-biotech Market
- Swaziland Approves Importation and Environmental Release of Bt Cotton
- African Women for Biosciences Platform Launched
- Biologists and Computer Scientists Identify Temporal Logic of Regulatory Genes Affecting Nitrogen Use Efficiency in Plants
- Analysis Reveals Cassava Breeding Has Not Improved Photosynthesis or Yield Potential
- Corn Breaks Genetics Law
- Chinese Researchers Complete Genome Sequencing of Wheat A Subgenome
- GM Mustard to Undergo Another Field Trial in India
- Researchers Discover Plants Respond Better to Overdoses of Light
-
Research Highlights
- Researchers Discover the Negative Regulator of Anthocyanin in Cabbages
- Harpin Protein Gene Confers Enhanced Resistance to Phytophthora Rot in Soybean
-
Beyond Crop Biotech
- Gene Editing Shows Promise for Improving Cacao
- Gene Studies Land on the List of Most Cited Scholarly Articles in Wikipedia
-
Plant
- Genome Modification Delays Petal Senescence in Japanese Morning Glory
- Researchers Control Rice Hull Color via CRISPR
- ZFN-Mediated Editing Leads to Imidazolinone Herbicide Tolerance in Wheat
- CRISPR Helps Clarify the Mechanism Behind Tomato rin Mutants
-
Read the latest: - Biotech Updates (March 19, 2025)
- Gene Editing Supplement (March 12, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet