Corn Breaks Genetics Law
May 16, 2018 |
Some heirloom varieties of corn contain a cheater chromosome, called Abnormal chromosome 10 (Ab10). It cheats in the female part of the flower during meiosis, where it is regularly transmitted about 75 percent of the time instead of the normal 50 percent.
A team of researchers from multiple universities led by University of Georgia Professor of Genetics, Kelly Dawe, discovered that Ab10 encodes a cluster of genes coding for specialized motor proteins. These motor proteins bind to chromosomes and actively pull them to the reproductive egg cell. The molecular motors are only found on Ab10, and they enable the Ab10 chromosome to be transmitted to more than 50 percent of the offspring.
These so-called meiotic drive systems were thought to have evolved and gone extinct many times. The presence of cheaters has favored the evolution of new biological rules that thwart the cheaters and ensure overall fairness. It is rare to visualize a cheater in action, and rarer still to solve its molecular mechanism. "The mystery had been known for many years before I began studying it, and we have been trying to solve the problem in our laboratory for over 20 years," Dawe said. "It was very satisfying to finally find the genes, and even more satisfying to learn that molecular motors are powering the process."
Read more from UGA Today.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Report: GM Crops to Dominate Global Agri-biotech Market
- Swaziland Approves Importation and Environmental Release of Bt Cotton
- African Women for Biosciences Platform Launched
- Biologists and Computer Scientists Identify Temporal Logic of Regulatory Genes Affecting Nitrogen Use Efficiency in Plants
- Analysis Reveals Cassava Breeding Has Not Improved Photosynthesis or Yield Potential
- Corn Breaks Genetics Law
- Chinese Researchers Complete Genome Sequencing of Wheat A Subgenome
- GM Mustard to Undergo Another Field Trial in India
- Researchers Discover Plants Respond Better to Overdoses of Light
-
Research Highlights
- Researchers Discover the Negative Regulator of Anthocyanin in Cabbages
- Harpin Protein Gene Confers Enhanced Resistance to Phytophthora Rot in Soybean
-
Beyond Crop Biotech
- Gene Editing Shows Promise for Improving Cacao
- Gene Studies Land on the List of Most Cited Scholarly Articles in Wikipedia
-
Plant
- Genome Modification Delays Petal Senescence in Japanese Morning Glory
- Researchers Control Rice Hull Color via CRISPR
- ZFN-Mediated Editing Leads to Imidazolinone Herbicide Tolerance in Wheat
- CRISPR Helps Clarify the Mechanism Behind Tomato rin Mutants
-
Read the latest: - Biotech Updates (September 4, 2024)
- Gene Editing Supplement (August 28, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet