Plastocyanin Gene from Seepweed Improves Oxidative Stress Tolerance in Arabidopsis
January 10, 2018 |
Previous studies have indicated that plant plastocyanins are involved in copper homeostasis. However, their physiological relevance remains elusive. The team of Xin-Tong Zhou of Chinese Academy of Sciences found that a plastocyanin gene, SsPETE2, from seepweed (Suaeda salsa) has a novel antioxidant function, which was associated with its copper-chelating activity.
In S. salsa, the expression of SsPETE2 increased when the plant was exposed to oxidative stress. When SsPETE2 was expressed in Arabidopsis, it enhanced the antioxidant ability of the transgenic plants. The SsPETE2 protein binds to Cu ions and alleviate formation of hydroxyl radicals. Thus, SsPETE2 expression lowers the free Cu content that was associated with plants under oxidative stress.
Interestingly, SsPETE2-expressing plants exhibited more potent tolerance to oxidative stress than plants overexpressing AtPETEs. This means that the SsPETE2 protein has a stronger copper-binding activity than AtPETEs protein.
These results demonstrate that plant PETEs play a role in oxidative stress tolerance by regulating Cu ions in plants under stress conditions. SsPETE2, an efficient copper-chelating PETE, could be potentially used in crop genetic engineering.
For more information, read the article in Plant Science.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Team of International Scientists Unlocks Peanut's Genetic Code
- IITA Begins Confined Field Trials of Transgenic Cassava
- Global Research Team Identifies Pathogen Gene that Wheat Plants Detect to ‘Switch On' Resistance
- Salk Scientists Discover Unusual Immune Response of Plants to Bacterial Infection
- Researchers Find Genetic Mechanism that Could Enhance Yield of Cereal Crops
- FSANZ Releases Approval Report for Food Derived from Golden Rice
- European Commission Authorizes Six GM Crops for Food and Feed
-
Research Highlights
- TaHDZipI-5 Involved in Drought and Frost Tolerance in Wheat
- Plastocyanin Gene from Seepweed Improves Oxidative Stress Tolerance in Arabidopsis
- Overexpression of PaFKBP12 in Arabidopsis Enhances Tolerance to Multiple Stresses
-
Beyond Crop Biotech
- Researchers Find Gene Involved in Arsenic Resistance in Poplar
-
From the BICs
- Workshop Discusses Importance of Biotech in Sustainable Agri Dev't in Vietnam
-
Resources
- ISAAA Blog: How Filipino News Writers Define Biotechnology
-
Plant
- Scientists Use CRISPR-Cas9 Technology to Improve Drought and Salt Tolerance in Rice
- Genome Editing of CLAVATA Genes in Canola Regulates Multilocular Silique Development
-
Read the latest: - Biotech Updates (October 2, 2024)
- Gene Editing Supplement (September 26, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet