
Transcription Factor Sx1R Regulates Xylanase Genes in Trichoderma reesei
August 16, 2017https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-0878-x
|
Trichoderma reesei is widely used cellulase production. However, its xylanase activity must be improved to enhance its ability to degrade lignocellulose. While several transcription factors play important roles in this process, Rui Liu from the Chinese Academy of Science want to focus on specific xylanase transcription factors that would regulate xylanase activity.
The team studied a novel zinc binuclear cluster transcription factor, designated as SxlR (specialized xylanase regulator). They found that it represses xylanase activity, but not cellulase activity. Further investigations revealed SxlR could bind to the promoters of xylanase genes (xyn1, xyn2, and xyn5) and directly regulate transcription and expression. Deletion of SxlR in T. reesei RUT-C30 generated the mutant ∆sxlr strain, which possesses higher xylanase activity as well as higher hydrolytic efficiency on pretreated rice straw.
This study revealed the transcriptional repressor of xylanase genes, Sx1R, which adds to the understanding of the regulatory system of cellulase and hemi-cellulase in T. reesei. The deletion of SxlR may also help improve the efficiency of T. reesei for lignocellulose degradation.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Agri-biotech Global Market May Reach US$39.5B in 2022
- New Method to Measure NPQ for Better Photosynthesis
- Brazil's CTNBio Approves New GM Soybean
- Unlocking Planthoppers' Role in Rice Stripe Virus Reproduction
- Indian Agricultural Economists Support GM Mustard Commercialization
- India's Environment Ministry Stresses Safety of GM Mustard
- Biologists Discover New Mechanisms of Protein Transport in Plant Cells
- Genetically Modified Multi-Nutrient Rice Offers Three Micronutrients Against Malnutrition
-
Research Highlights
- Arabidopsis P3B Confers Temperature Stress Tolerance in Sweet Potato
- Coffee BDP Gene Affects Abiotic Stress Response of Transgenic Arabidopsis
-
Beyond Crop Biotech
- US FDA's Plan to Reduce Nicotine in Cigarettes Prompts Other Countries to Follow Suit
-
Announcements
- Plant Genome Evolution 2017
- 3rd International Conference on Genetic and Protein Engineering
-
Resources
- ISAAA Infographic: 17 Years of Media Reportage on Modern Biotech in the Philippines
-
Plant
- CRISPR-Mediated Modification of TaEDR1 Homologs Enhances Powdery Mildew Resistance in Wheat
-
Read the latest: - Biotech Updates (April 30, 2025)
- Gene Editing Supplement (April 30, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet