
SchRabGDI1 from Wild Tomato Confers Tolerance to Salt Stress
July 12, 2017 |
Physiological responses of plants to salinity stress require the coordinated activation of many genes. Alex San Martín-Davison from Universidad de Talca in Chile, led a team of scientists and isolated a salt-induced gene from the roots of the wild tomato, Solanum chilense, named SchRabGDI1.
Analysis found that the protein from SchRabGDI1 are regulators of the RabGTPase cycle and play key roles in intracellular vesicular trafficking. The expression patterns of the gene showed early upregulation in roots and leaves under salt stress. Expression of SchRabGDI1 in Arabidopsis thaliana plants resulted in increased salt tolerance. Furthermore, root cells of transgenic plants showed higher accumulation of sodium in vacuoles under salt stress than wild types.
These results suggest that SchRabGDI1 from the salt tolerant species such as S. chilense can be used for improving salt tolerance in plants.
For more on this study, read the article in Plant Science.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Bangladesh Ag Leaders Keen to Adopt Biotech Cotton
- QUT Scientists Develop Golden Bananas to Fight Vitamin A Deficiency in Africa
- Uganda Gov't Upbeat on Passing GM Crops Legislation
- Study Gives Insights on Shoot Growth Dynamics in Rice
- Global Team of Researchers and Scientists Publish Wild Emmer Wheat Genome
- European Commission Authorizes Five GM Products for Food/Feed Use
- JIC Scientists Biofortify Wheat to Produce Flour with More Iron
-
Research Highlights
- Alfalfa STF Gene Alters Leaf Width, Flowering Time and Chlorophyll Content in Wheat
- SchRabGDI1 from Wild Tomato Confers Tolerance to Salt Stress
-
Beyond Crop Biotech
- USDA Releases Final Risk Assessment, Finding of No Significant Impact, and Permit for GE Diamondback Moth
- Researchers Develop Imidazolinone Herbicide Tolerant Borage
-
Announcements
- ICABBE & 6th ICBB
-
Resources
- Become an Advocate for Biotechnology
-
Plant
- Discovery of Essential MPK Genes in Rice by Studying CRISPR Knock-out Mutants
- Development of Powdery Mildew Resistant Tomato via CRISPR-Cas9
-
Read the latest: - Biotech Updates (April 23, 2025)
- Gene Editing Supplement (April 30, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet