Get updates on COVID-19 research at COVID-19 Resource
Crop Biotech Update

SchRabGDI1 from Wild Tomato Confers Tolerance to Salt Stress

July 12, 2017

Physiological responses of plants to salinity stress require the coordinated activation of many genes. Alex San Martín-Davison from Universidad de Talca in Chile, led a team of scientists and isolated a salt-induced gene from the roots of the wild tomato, Solanum chilense, named SchRabGDI1.

Analysis found that the protein from SchRabGDI1 are regulators of the RabGTPase cycle and play key roles in intracellular vesicular trafficking. The expression patterns of the gene showed early upregulation in roots and leaves under salt stress. Expression of SchRabGDI1 in Arabidopsis thaliana plants resulted in increased salt tolerance. Furthermore, root cells of transgenic plants showed higher accumulation of sodium in vacuoles under salt stress than wild types.

These results suggest that SchRabGDI1 from the salt tolerant species such as S. chilense can be used for improving salt tolerance in plants.

For more on this study, read the article in Plant Science.