Study Gives Insights on Shoot Growth Dynamics in Rice
July 12, 2017 |
Through combined high-resolution image-based phenotyping with functional mapping and genome prediction, a new research conducted at the Australia Plant Phenomics Facility (APPF) provides insights into the complex genetic architecture and molecular mechanisms underlying early shoot growth dynamics in rice.
The timing of developmental ‘triggers' or switches that initiate tiller formation and rapid exponential growth in rice are a critical component of early vigor trait which is important in aerobic rice environments. However, the search for the switch that initiates this growth has proven challenging due to the complex genetic basis and large genotype-by-environment effect, and the difficulty in accurately measuring shoot growth for large populations.
The APPF team led by PhD student Malachy Campbell phenotyped a panel of ~360 diverse rice accessions throughout the vegetative stage (11-44 day old plants) at APPF. A mathematical equation was used to describe temporal growth trajectories of each accession. Regions of the genome that may regulate early vigor were inferred using genome-wide association (GWA) mapping. Many loci with small effects on shoot growth trajectories were identified, indicating that many genes contribute to this trait. GWA, together with RNA sequencing identified a gibberellic acid (GA) catabolic gene, OsGA2ox7, which could be influencing GA levels to regulate vigor in the early tillering stage.
For more details, read the APPF News.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Bangladesh Ag Leaders Keen to Adopt Biotech Cotton
- QUT Scientists Develop Golden Bananas to Fight Vitamin A Deficiency in Africa
- Uganda Gov't Upbeat on Passing GM Crops Legislation
- Study Gives Insights on Shoot Growth Dynamics in Rice
- Global Team of Researchers and Scientists Publish Wild Emmer Wheat Genome
- European Commission Authorizes Five GM Products for Food/Feed Use
- JIC Scientists Biofortify Wheat to Produce Flour with More Iron
-
Research Highlights
- Alfalfa STF Gene Alters Leaf Width, Flowering Time and Chlorophyll Content in Wheat
- SchRabGDI1 from Wild Tomato Confers Tolerance to Salt Stress
-
Beyond Crop Biotech
- USDA Releases Final Risk Assessment, Finding of No Significant Impact, and Permit for GE Diamondback Moth
- Researchers Develop Imidazolinone Herbicide Tolerant Borage
-
Announcements
- ICABBE & 6th ICBB
-
Resources
- Become an Advocate for Biotechnology
-
Plant
- Discovery of Essential MPK Genes in Rice by Studying CRISPR Knock-out Mutants
- Development of Powdery Mildew Resistant Tomato via CRISPR-Cas9
-
Read the latest: - Biotech Updates (November 27, 2024)
- Gene Editing Supplement (November 27, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet