Transgenic Cotton Allows Selective Fertilization for Weed Control
June 6, 2018 |
Weeds, which have long been a problem in agriculture, are managed manually, mechanically, as well as by using chemicals. However, chemical control options are dwindling due to the rise of herbicide-resistant weeds in fields. Devendra Pandeya and Damar L. López-Arredondo from Texas A&M University and StelaGenomics México, respectively, led a team of researchers to develop an alternative weed control system.
Their team developed transgenic cotton (Gossypium hirsutum) plants expressing the bacterial phosphite dehydrogenase (ptxD) gene, which confers the ability to convert phosphite (Phi) into orthophosphate (Pi), the metabolizable form of phosphorus (P). When P is supplied in the form of Phi, the ptxD-expressing cotton plants outcompete different weed species intentionally introduced in the experiments, as well as weeds naturally present in the tested soils. Furthermore, the ptxD/Phi system was highly effective in inhibiting the growth of the glyphosate-resistant Palmer amaranth.
With several weed species having resistance to currently available herbicides, these ptxD-transgenic plants fertilized with Phi presents an effective alternative for suppressing weed growth.
For more information, read the full article in Proceedings of the National Academy of Sciences of the United States of America.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- World Seed Congress Highlights Industry's Mission to Unlock the Power of Genetics
- Malawi Releases New Seed Policy
- Journalists Urged to Do Quality Reporting on Science and Technology
- Ethiopia Approves Environmental Release of Bt Cotton and Grants Special Permit for GM Maize
- Scientists Use Big Data to Map Corn's Response to Heat Stress
- Indian Farmers Use Whatsapp and Facebook to Demand GM Seeds
- ICRISAT and NRGene Make Chickpea and Pigeonpea Reference Genome Data Available
- Report Shows Costs of Chinese Delays on Biotech Crop Approvals
- European and French Studies Disprove Seralini's GM Maize Claims
-
Research Highlights
- Transgenic Cotton Allows Selective Fertilization for Weed Control
- Scientists Engineer Safflower to Produce Healthier Oil
- Scientists Discover the Role of Isopentenyltransferase in Lycopene Synthesis in Tomato
-
Announcements
- IAPB2018
-
Resources
- The Promise of Genome Editing Tools to Advance Environmental Health Research
-
Plant
- Transcription Factor Controlling Production of Secondary Cell Walls Found in Rice
- Chinese Scientists Develop Fungus-Resistant Cotton
- Researchers Analyze the Function of TaGW2 Genes in Wheat Grain Traits
- CRISPR-Mediated Editing of Rice False Smut Fungus
-
Read the latest: - Biotech Updates (October 2, 2024)
- Gene Editing Supplement (September 26, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet