Hoppy Beer Without the Hops
March 28, 2018 |
University of California, Berkeley (UC Berkeley) biologists have engineered strains of brewer's yeast that not only ferment the beer, but also provide two of the prominent flavor notes provided by hops. Yeast is preferred instead of hops because growing hops uses lots of water, not to mention fertilizer and energy to transport the crop, all of which could be avoided by using yeast to make a hop-forward brew. A pint of craft beer can require 50 pints of water merely to grow the hops.
The engineered yeast strains were modified using the gene editing tool CRISPR-Cas9. Charles Denby and Rachel Li from UC Berkeley inserted four new genes plus the promoters that regulate the genes into industrial brewer's yeast. Two of the genes – linalool synthase and geraniol synthase – code for enzymes that produce flavor components common to many plants. In this instance, the genes came from mint and basil, respectively. The two other genes were from yeast and boosted the production of precursor molecules needed to make linalool and geraniol, the hoppy flavor components.
The researchers used a specially designed software program to get the right mix of promoters to produce linalool and geraniol in proportions similar to the proportions in commercial beers produced by Sierra Nevada Brewing Company. They then asked Charles Bamforth, a malting and brewing authority at UC Davis, to brew a beer from three of the most promising strains, using hops only in the initial stage of brewing to get the bitterness without the hoppy flavor. Hop flavor was supplied only by the new yeast strains. In double-blind taste tests, employees of Lagunitas Brewing Company in Petaluma, California, characterized beer made from the engineered strains as more hoppy than a control beer made with regular yeast and Cascade hops.
For more details, read the Berkeley News.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Drought Causing Highest Losses in Agri among All Disasters, Report
- Unique Communication Strategy in Pathway that Controls Plant Growth Discovered
- New Insights on How Cellulose is Built Could Indicate How to Break it Apart for Biofuels
- Researchers Find New Clues on How to Stop Spread of Citrus Greening
- Scientists Discover Circadian Clock Controls Cell Cycle in Plants
- International Team Finds a Way to Stop Rice Blast Spread
-
Research Highlights
- SlMAPK1 Overexpression Enhances Drought Tolerance in Tomato
- Gene Responsible for Cadmium Accumulation in Rice Grains Found
-
Beyond Crop Biotech
- Hoppy Beer Without the Hops
- New CRISPR Tool Restores Protein Imbalance in Dementia Patient's Cells
-
Announcements
- Training Workshop on ComRes for Scientists
-
Resources
- CAST Issue Paper Discusses Regulatory Barriers to AgBiotech
- Open Access Wild Tomato Genome Now Available
- ISAAA SEAsiaCenter in 2017
-
Plant
- Brassinosteroids Regulate Secondary Cell Wall Formation in Poplar
- Scientists Prove CRISPR's Potential As Control for Queensland Fruit Fly
- CRISPR-Cas9 Can Modify Cotton Bollworm Genes
- Researchers Discover Gene for Salt Stress Sensitivity in Rice
-
Read the latest: - Biotech Updates (September 4, 2024)
- Gene Editing Supplement (August 28, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet