CRISPR-Cas9 System Applicable in Cultivated Strawberry
March 21, 2018 |
Gene function studies for the cultivated strawberry (Fragaria × ananassa) are commonly conducted via gene silencing using intron hairpin RNA (ihpRNA)-based constructs. However, this system is not as efficient or stable as expected. Carmen Martin-Pizarro and David Posé Padilla of University of Malaga in Spain investigated the use of CRISPR-Cas9 system in this octoploid species, targeting the floral homeotic gene APETALA3 (AP3).
The developed gene-edited strawberry lines displayed defects in stamen and fruit development. Analysis of the targeted locus indicated differences in gene editing among different CRISPR-edited lines, and also found lines with mutations in all eight AP3 copies in the strawberry genome. More importantly, these mutations were maintained in clone plants generated from runners, ensuring the maintenance of the CRISPR-Cas9 edits during strawberry plant propagation.
CRISPR-Cas9 system is a functional tool to perform genome editing in cultivated strawberry. This system could be an alternative strategy for functional analysis of genes in this crop.
For more information, read the article in Repositorio International de la Universidad de Malaga.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Crops Hold Rare Harmful Mutations that Reduce Productivity
- NY Student Wins Award on Solution for Potato Late Blight
- Golden Rice Gets Approval from Health Canada
- Mexican Researchers Develop GE Tomato that Decreases Hypertension
- Australian OGTR Releases Notifications of License Application for 2 GM Crops; Invites Comments on Commercial Release of GM Safflower
- Plants Found to Overcome Hunger by Activating Autophagy
- Expert Says New Breeding Technologies Can Help Grow More Food
- Report: Gains in Corn Production in the Philippines Largely Due to GE Seeds
- English Journalist Reviews Mark Lynas' Book, Seeds of Science
- Scientists Discover Gene that Confers Flood Tolerance, Drought Tolerance, and Disease Resistance in Rice
-
Research Highlights
- Sheepgrass MADS-Box Genes Involved in Abiotic Stress Responses
- Researchers Find Genes Conferring Enhanced Defense against Cassava Bacterial Blight
-
Resources
- Pocket K No. 56: Substantial Equivalence of GM and Non-GM Crops
- Book: How to Feed the World
-
Plant
- Chinese Researchers Pinpoint Maize Gene for Male Sterility
- BrAP2 Gene Holds Key to Improved Seed Production in Brassica
- CRISPR-Cas9 System Applicable in Cultivated Strawberry
- Scientists Shed Light on the Role of Abscisic Acid in Rice Disease Resistance
-
Read the latest: - Biotech Updates (September 4, 2024)
- Gene Editing Supplement (August 28, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet