Biotech Updates

Overexpression of Yeast Transcription Factor Improves Root Architecture in Black Locust

January 27, 2016

Transcription factors play a key role to enable plants to cope with abiotic stresses. DREB2 regulates the expression of several stress-inducible genes and constitutes major hubs in the water stress signalling webs. Scientists headed by Yu Xiu of the Beijing Forestry University in China studied a novel gene encoding the FpDREB2A transcription factor from the yeast Fraxinus pennsylvanica.

Overexpression of FpDREB2A in the black locust tree (Robinia pseudoacacia) showed enhanced resistance to drought stress. The transgenic plant survival rate in drought conditions was significantly higher than control plants. The transgenics also exhibited a change in root architecture, with both horizontal and vertical roots. The vertical roots penetrated the soil more than 60 cm deep, while horizontal roots expanded within the top 20–30 cm of the soil.

The team found differential expression genes (DEGs) between the transgenics and the wild types. The DEGs found were involved in hormone signalling, transcription factors, stimulus responses and other metabolic pathways. These modified pathways in plant hormone signalling are thought to be the main cause of greater horizontal and vertical root development.

For more information on the study, read the full article on Plant Biotechnology Journal.