Genome of Ancient Crop Could Help Raise Yields
March 13, 2019 |
An international team of researchers and scientists from the USA and China has sequenced the genome of proso millet, world's most drought-resilient crop grown mostly in the American Great Plains, northern China, and parts of Europe.
Millets grow in infertile soils with less water than any other grain, and is popular among subsistence farmers in ever-hotter, drier swaths of Africa and Asia. However, low yields combined with traits that make them difficult to harvest, limited their viability as a food, feed, or fuel staple.
The sequencing project identified more than 55,000 genes which instruct the building of proteins. It was also revealed that the species' genome originated from the merging of two closely related genomes more than 5 million years ago. By comparison, the genome of bread wheat emerged within just the last 6,000 years.
The team also made a biochemical discovery that has never been reported in other plant species before. Proso millet, a C4 plant, has been found to use all three different biochemical paths to convert inorganic carbon into a useful form. Most C4 plants use just one of the three biochemical paths, with plant biologists only recently finding evidence of two paths in corn.
For more details, read the news article in Nebraska Today.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Genome of Ancient Crop Could Help Raise Yields
- GM Maize Additional Solution to Help Farmers Improve their Income
- IFPRI Study Says Farmers in Bangladesh Benefited by Adopting Bt Brinjal
- Golden Rice Available in Bangladesh in Months Time
- Scientists Decode the Genetic Basis of Floret Fertility in Wheat
- Research Team Identifies Gene Responsible for Diversity of Fruit Shapes in Brassicas
-
Research Highlights
- Rice Pathogen Gene Enhances Soybean's Resistance to Phytophthora Root and Stem Rot
-
Beyond Crop Biotech
- Engineered Microbes Key to Producing Plastic from Plants
- Scientists Produce Marijuana Extract from Re-engineered Yeast
- U.S. FDA Lifts Import Ban on GE Salmon
-
From the BICs
- Tackling the Menace of Fall Armyworm to Bolster Farmers' Income in India
- PABIC Holds Scicom Workshop for Journalists in Pakistan
-
Plant
- Dek42 Encodes an RNA Binding Protein Affecting Maize Kernel Development
- The Current Status of CRISPR-Cas9 Applications in Food and Agri
- Corn, Other Important Crops Can Now Be Edited by Pollen Carrying CRISPR
-
Read the latest: - Biotech Updates (October 9, 2024)
- Gene Editing Supplement (September 26, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet