Near-complete Genome Sequence of Snapdragon Successfully Assembled
February 6, 2019 |
Researchers have successfully assembled a near-complete genome sequence of the popular plant model system Antirrhinum majus, commonly known as snapdragon.
The near-complete assembly is comprised of 510 megabases of genomic sequence and contains nearly 38,000 annotated protein-encoding genes. The research was done by scientists in China and at the John Innes Centre (JIC).
Snapdragon, a flowering plant, has served as a model system for the past three decades, facilitating investigations into molecular and developmental genetics. Antirrhinum has been used as a model system by scientists in learning more about plant shape, gene function and important genetic elements such as transposons – also known as jumping genes.
For more details, read the press release from JIC.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- FAO: Sustainable Agri Requires an Integrated Approach
- USDA ARS Female Biologist Bags NAS Food And Agricultural Science Prize
- SEARCA-BIC Policy Brief Analyzes the Cost of Regulatory Delays for GM Crops
- Scientists Sequence Genome of Broomcorn Millet
- Substance that Gives Rapeseed a Bitter Taste Has Been Discovered
- Near-complete Genome Sequence of Snapdragon Successfully Assembled
- Research Groups Discover How Plants Cope with Iron Deficiency
-
Research Highlights
- Overexpression of Moss Gene in Cotton Enhances Yield and Fiber Quality
- Biofortified Cassava Shows Higher Levels of Iron
-
Beyond Crop Biotech
- GM Chickens Developed to Lay Anti-cancer Eggs
-
From the BICs
- Communicating Scientific Issues Responsibly
-
Announcements
- Genetic Biocontrol for Invasive Species
-
Plant
- CRISPR-Cas9 System Used to Develop First-Ever Plantain Resistant to Banana Streak Virus
- New CRISPR Database to Catalyze Collaborations
- Agrobacterium-delivered CRISPR-Cas9 System for Genome Editing of Wheat
-
Read the latest: - Biotech Updates (December 4, 2024)
- Gene Editing Supplement (November 27, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet