
Researchers Develop First Step Toward Controlled Gene Therapy
July 20, 2016 |
The ability to switch disease-causing genes on and off remains a fantasy. However, a team of researchers from Charité – Universitätsmedizin Berlin and the Max Planck Institute for Medical Research in Heidelberg may have just turned this into reality. Led by Dr. Mazahir T. Hasan, the team has programmed a virus to transport the necessary genetic material to affected tissues and deliver instructions to the host without becoming part of it.
"We use attenuated, non-replicating viruses known as recombinant adeno-associated viruses (rAAV). We use them to transport genetically encoded material into live organisms affected by disease," explains Dr. Hasan. "This approach opens up a whole range of options which, in the future, may allow us to treat and heal various diseases."
RAAVs can transport genetically-encoded material into any type of cell and tissue and are capable of repeatedly switching gene therapy applications on and off again. This on/off switch is controlled chemically, via food intake or drinking water. RAAV-infected cells also do not trigger any immune response and their genetic material remains intact.
For more information, read the article in Nature.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- FAO Seeks to Bridge Gap between Agri and Forestry to Improve Food Security
- BecA Director Asks Scientists to Tell the World about their Research
- Kenyan Senator Urges Adoption of GM Crops in the Country
- Scientists Share Advances in Alfalfa Genome Research
- U.S. House of Representatives Passes GM Food Labeling Bill
- Herbicide Resistance Predates GM Crops, Says Weed Scientists
- Research Team Explains How Plants Can Grow on Saline Soils
- International Team of Scientists Release Whole Genomes and Epigenomes of More than 1,000 Arabidopsis Plants
-
Research Highlights
- SAPK9 Improves Drought Tolerance and Grain Yield in Rice
- Agrobacterium rhizogenes Genes Induce Dwarfism in Arabidopsis
- Overexpression of Alfalfa TMT Increases α-Tocopherol content in Arabidopsis Seeds
-
Beyond Crop Biotech
- Scientists to Harness Plant Microbiome to Improve Food Supply
- Researchers Develop First Step Toward Controlled Gene Therapy
- GM Mosquitoes Reduce Dengue Fever Cases by 91% in Piracicaba, Brazil
-
Announcements
- 2nd International and 14th National Iranian Crop Science Congress
-
Read the latest: - Biotech Updates (March 12, 2025)
- Gene Editing Supplement (March 12, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet