DARPA Explores on Using Plants to Detect Security Threats
November 29, 2017 |
The Defense Advanced Research Projects Agency (DARPA) of the U.S. Department of Defense announced the conduct of a new project that explores on the potential of plants to be used in next-generation surveillance technology.
The project, called Advanced Plant Technologies, focuses on engineering robust, plant-based sensors that are self-sustaining in their environment and can be remotely monitored using existing hardware. The main objective of the project is to boost the natural stimulus response mechanisms in plants to detect the presence of specific chemicals, pathogens, radiation, as well as electromagnetic signals.
DARPA plans to use genome editing, a technology that has shown promising results in other plants. "Plants are highly attuned to their environments and naturally manifest physiological responses to basic stimuli such as light and temperature, but also in some cases to touch, chemicals, pests, and pathogens," said Blake Bextine, Program Manager of APT. "Emerging molecular and modeling techniques may make it possible to reprogram these detection and reporting capabilities for a wide range of stimuli, which would not only open up new intelligence streams, but also reduce the personnel risks and costs associated with traditional sensors," he added.
Read the news release from DARPA for more details.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- AUC and FAO Ask African Gov'ts to Promote Agri-Biotech to Help Combat Food Insecurity
- Corn Research Exposes Mechanism Behind Gene Silencing
- Argentina Approves New Biotech Soybean
- EU Ban on GM Crops Hurting Productivity, says Retired Professor
- EFSA Releases Scientific Opinion on Four-Stack GM Maize
-
Research Highlights
- Biotech Cotton Co-expressing Vip3AcAa and Cry1Ac Confers Protection against Cry1Ac-resistant Bollworm
- Cgl2 Gene Involved in Cuticular Wax Synthesis in Cabbage
- SlJAZ2 Overexpression Accelerates Reproductive Growth in Tomato
-
Beyond Crop Biotech
- DARPA Explores on Using Plants to Detect Security Threats
- Researchers Pinpoint the Regulator of Phenylalanine Synthesis in Maritime Pine
- Scientists Study Genes Involved in Triterpenoid Synthesis in Birch
-
Announcements
- 3rd Biennial National Agricultural Sciences Conference and Exhibition
-
Resources
- Biotech Country Facts and Trends
-
Plant
- Heat Stress Increases the Efficiency of CRISPR-Cas9 Mutagenesis in Plants
- Study Shows CRISPR Mainly Used to Develop High-yielding, Healthier, and Stress-resistant Crops
-
Read the latest: - Biotech Updates (September 4, 2024)
- Gene Editing Supplement (August 28, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet