Vitamin E in Maize Could Lead to More Nutritious Crop
November 8, 2017 |
Scientists from Cornell University and colleagues from other institutions have identified genes that control Vitamin E content in the maize grain.
The researchers used different types of genetic association analyses to identify 14 genes across the maize genome involved in the synthesis of vitamin E. Six genes were newly discovered to encode proteins that contribute to a class of antioxidant compounds called tocochromanols, collectively known as vitamin E. Aside from antioxidant properties, tocochromanols are associated with good heart health in humans and proper functioning in plants.
A near-complete foundation for the genetic improvement of vitamin E in maize grain and other major cereals has been established, according to Michael Gore, associate professor of plant breeding and genetics and a co-corresponding author of the study published in The Plant Cell.
For more details, read the news release from Cornell University.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Biotech Players Discuss International Agreements Related to Agri-biotech
- Africa to Benefit as Plant Genetic Treaty Plans to Expand its Resource Bank
- Kenyan Scientists Find New Striga Resistance Genes in Wild Sorghum
- Asparagus Genome Answers Questions About Origin and Early Evolution of Sex Chromosomes
- Discovery on Circadian Clock Could Help Boost Water Efficiency of Plants
- Vitamin E in Maize Could Lead to More Nutritious Crop
- USDA to Re-engage Stakeholders on Revisions to Biotech Regulation
- Bangladesh Government to Provide Incentives for Bt Brinjal Farmers
-
Research Highlights
- Co-expression of AtNHX1 and Bar Genes Improves Both Salinity and Herbicide Tolerances in Mungbean
-
Beyond Crop Biotech
- Researchers Find Differentially-Expressed Genes Between Normal and Malformed Flowers in Sugar Apple
- Dutch Scientists Decode Tulip Genome, The Biggest Genome Ever Sequenced
-
Announcements
- Genome Engineering and Synthetic Biology
- Webcast: Science of Science Communication III
-
Plant
- CRISPR-Cas9-Mediated Genome Editing of Cassava
- New CRISPR System Enables Temporary Gene Editing
-
Read the latest: - Biotech Updates (September 4, 2024)
- Gene Editing Supplement (August 28, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet