
Chemicals Helping Plants Defend Themselves Could Replace Pesticides
December 9, 2015 |
A new research published in Bioorganic and Medicinal Chemistry Letters has identified five chemicals that trigger the defense mechanism of rice plants to ward off the white-backed planthopper, a common rice pest.
Plants have natural self-defense mechanisms that can be switched on using chemicals that are not harmful to the environment, and are not toxic to insects or their natural enemies. In the study, researchers from Zhejiang University in China used a specially designed screening system to determine the different chemicals that switched on the plants' defense mechanism. The team designed and synthesized 29 phenoxyalkanoic acid derivatives, and identified five that could be effective at triggering the rice plants to defend themselves.
"We demonstrate for the first time that some phenoxyalkanoic acid derivatives have the potential to become such plant protection agents against the rice white-backed planthopper," said Dr. Yonggen Lou, one of the authors of the study and professor at Zhejiang University.
For more, read the Alpha Galileo news release.
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- PNAS: To Feed the World in 2050 will Require a Global Revolution
- USDA Issues Preliminary Extended Determination of Nonregulated Status for V11 Potatoes
- Scientists Review ODM as Precision Genome Editing Technology
- USDA Extends Deregulation to GE Corn MZHG0JG
- Peptide Holds Promise for Increasing Crop Yields without More Fertilizer
- Arcadia Biosciences and BGI to Create Rice Genetics Resource
- Chemicals Helping Plants Defend Themselves Could Replace Pesticides
- Increased CO2 Altered Photosynthesis Over the 20th Century
- Swedish Board of Ag: CRISPR-Cas9 Doesn't Fall Under EU GM Definition
-
Research Highlights
- Scientists Investigate Metabolic Changes in GE Maize Over-expressing the Aspergillus niger phyA2
- Overexpression of the MYB37 Enhances Both Drought Tolerance and Seed Productivity in Arabidopsis
- Downregulation of Cytokinin Oxidase 2 Increases Tiller Number and Improves Rice Yield
-
Beyond Crop Biotech
- GM Mice Reveals Secret to Painless Existence
- SINE Compounds Inhibit Expression of XPO-1 and Shows Antitumor Properties in Prostate Cancer Models
-
Announcements
- Cell Culture World Congress 2016
-
Read the latest: - Biotech Updates (April 30, 2025)
- Gene Editing Supplement (April 30, 2025)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet