Punctured-hypocotyl Method of Agrobacterium-mediated Transformation
April 16, 2014 |
Tomato productivity has always been constrained because of abiotic stresses. Transgenic tomatoes are presently being developed to minimize these losses due to abiotic stresses. Agrobacterium-mediated transformation is the most common approach to producing transgenic tomato. However, the effectiveness of the present methods were limited to only a few tomato cultivars. Hence, we still need an appropriate, simple and general procedure effective across all cultivars. Wounding methods, such as puncturing with a syringe needle, may just be the answer.
Using Indian tomato hypocotyl explants, the efficiencies of the punctured-hypocotyl method as well as normal immersion method of Agrobacterium-mediated transformation were compared. All factors influencing transformation efficiency, such as Agrobacterium density and co-cultivation time, were optimized. The transgene integration of the tomato genome was confirmed by PCR and Southern hybridization. Transformation efficiency was found to be greater with the punctured-hypocotyl method compared to the normal immersion method.
This newly developed method is simple, efficient and could be used to transfer important agronomic genes into the tomato genome for the potential improvement in terms of quality and quantity.
Read more at: http://www.sciencedirect.com/science/article/pii/S0304423813006237
|
Biotech Updates is a weekly newsletter of ISAAA, a not-for-profit organization. It is distributed for free to over 22,000 subscribers worldwide to inform them about the key developments in biosciences, especially in biotechnology. Your support will help us in our mission to feed the world with knowledge. You can help by donating as little as $10.
-
See more articles:
-
News from Around the World
- Ten Lessons from Biotechnology Experiences in Developing Countries
- Peanut Gets an Upgrade Against Drought and Salinity
- Obama's Clear Endorsement of Agricultural Biotechnology
- Cornell University Researcher Confirms Bangladesh Bt Eggplant Farms Free of Pest Damage
- Wheat's Wild Ancestors Give Clue to Ug99 Resistance
- Filamentous Fungus may Effectively Control Sugarcane Nematodes
- Philippine Genome Center Accelerates Genomics Research through New Bioinformatics Facility
- Sweet Potato Biotechnology in China
- Pakistani Government will Defeat the Food Challenges, Says Minister
- Biotech Jute Set for GEAC Approval in India
- Australia and Pakistan Collaborates in Agriculture
- Sugar Reponsible for Plant Growth
- Plant Biotech for Sustainable Pharmaceutical Compounds
- Warwick Scientists Explain How Plants Control Embryo Growth and Development
-
Research Highlights
- Punctured-hypocotyl Method of Agrobacterium-mediated Transformation
- Drought-Induced AtCBF4 Improves Transgenic Maize
-
Beyond Crop Biotech
- Enhancing Recombinant Protein Production of CHO Cells through Over-expression of miR-17
-
Announcements
- ABIC Foundation Accepts Travel Bursary
- ISAAA Releases Bt Brinjal Video "The Story of Bt Brinjal in India"
-
Resources
- Highlights of ISAAA Brief 46 in Four Videos
-
Read the latest: - Biotech Updates (September 11, 2024)
- Gene Editing Supplement (September 11, 2024)
- Gene Drive Supplement (February 22, 2023)
-
Subscribe to BU: - Share
- Tweet