Research Finds Autophagy's Remarkable Influence on Plant Metabolism

Researchers from Washington University in St. Louis led by Richard Vierstra describe the effects of autophagy on the metabolism of maize plants using a uniquely comprehensive set of modern "-omics" technologies. Autophagy is a process that helps break down damaged or unwanted pieces of a cell so that the building blocks can be used again. In plants, autophagy is often associated with aging, or a response to nutrient starvation.

Maize, or corn, is an important crop that is sensitive to nitrogen deprivation. According to Vierstra, the George and Charmaine Mallinckrodt Professor of Biology in Arts & Sciences, one of the largest costs to growing maize in terms of energy, expenditures and farmers' time is providing adequate nitrogen to fertilize the soil.

The group learned that maize plants lacking a key gene for autophagy are profoundly different at a molecular level — even if they're getting enough nutrients and appear to develop normally. Using state-of-the-art tools, the group compared and analyzed the transcriptome, proteome, metabolome, and ionome of maize seedlings grown with or without the autophagy-related gene ATG12, and fertilized with or without nitrogen. This allowed the team to identify cellular processes affected by autophagy. Once considered undiscriminating, autophagy is now considered to be highly selective, as only certain parts of the cell are specifically recognized and reused.

For more details about this research, read the news article in The Source.


This article is part of the Crop Biotech Update, a weekly summary of world developments in agri-biotech for developing countries, produced by the Global Knowledge Center on Crop Biotechnology, International Service for the Aquisition of Agri-Biotech Applications SEAsiaCenter (ISAAA)

Subscribe to Crop Biotech Update Newsletter
Crop Biotech Update Archive
Crop Biotech Update RSS
Biofuels Supplement RSS

Article Search: