Genome Archaeologists Uncover Origin of Plant Hormone Auxin- Crop Biotech Update ( 4/4/2018 ) | ISAAA.org/KC

Genome Archaeologists Uncover Origin of Plant Hormone Auxin

Auxin is present in varying concentrations in plant cells and tissues. The speed of plant growth, especially at the top, development of lateral shoots and roots, leaves, flowers and fruits are set in motion by the hormone auxin. It's still a mystery how all these processes are made possible by this age-old molecule, and how such a complex system came about.

PhD candidate at Wageningen University and Research, Sumanth Mutte, studied the genome of over a thousand plant species. He selected species that are all still alive, but which have a different evolutionary life history. This includes the 'modern' flowering plants that split off 320 million years ago and which now have a highly complex auxin system, older seed plant types such as conifers, and spore plants such as ferns and the earlier mosses, which are over half a billion years old. The oldest form of life studied for auxin were single-cell, green algae, dating back to the deep past of a billion years ago.

Research leader Dolf Weijers said that of the three protein families that mediate auxin functions, one was already present in the green algae. Digging even deeper, a billion years ago, their research led to fragments of the three protein families. "We still find them in the plants of today, but they originate from green algae and probably had a different function at first," Professor Weijers added.

Postdoctoral researcher Hirotaka Kato subsequently conducted 'experimental genome archaeology' with plants from the three different eras: algae, mosses, and ferns. The researcher studied how these genomes respond to auxin, by determining the number of genes that are turned on or off by the hormone, for instance. "This shows us how the auxin system has become more complex, and which components plants can modify to use the hormone for new processes to regulate its growth and shape," explains Professor Weijers.

For more, read the press release from Wageningen.


 

This article is part of the Crop Biotech Update, a weekly summary of world developments in agri-biotech for developing countries, produced by the Global Knowledge Center on Crop Biotechnology, International Service for the Aquisition of Agri-Biotech Applications SEAsiaCenter (ISAAA)

Subscribe to Crop Biotech Update Newsletter
Crop Biotech Update Archive
Crop Biotech Update RSS
Biofuels Supplement RSS

Article Search: