Scientists Decode Finger Millet Genome

Finger millet is a major staple food in Africa. It is a good source of minerals, vitamins, and essential amino acids, and has resistance to drought and heat.

Finger millet came from the hybridization of two different plant species. A polyploid, the size and complexity of its genome are thought to confer the broad environmental tolerance of finger millet, while making genome research extremely difficult. For the first time, an international team of researchers from the University of Zurich has managed to decode the complex genome of finger millet in great detail. It comprises about 2.6 million base pairs and has more than 62,300 genes – about twice as many as rice.

The researchers found that 57,900 finger millet genes (over 90 percent) occur in more than two copies. As their DNA sequences are very similar, it was difficult to correctly allocate the numerous, decoded DNA sections within the entire genome. The scientists combined a sophisticated bioinformatics strategy that uses state-of-the-art sequencing methods with a new technology that can optically map the long, individual DNA molecules in the genome. "Our newly developed strategy will help sequence the genome of other polyploid cultivated plants that have not been able to be determined until now," said Kentaro Shimizu, professor at the UZH Department of Evolutionary Biology and Environmental Studies.

For more information, read the UZH News.


 

This article is part of the Crop Biotech Update, a weekly summary of world developments in agri-biotech for developing countries, produced by the Global Knowledge Center on Crop Biotechnology, International Service for the Aquisition of Agri-Biotech Applications SEAsiaCenter (ISAAA)

Subscribe to Crop Biotech Update Newsletter
Crop Biotech Update Archive
Crop Biotech Update RSS
Biofuels Supplement RSS

Article Search: