Biotech Updates

Scientists Discover Gene that Doubles Artemisinin Production in Artemisia annua Plant

March 29, 2017

The plant Artemisia annua has been used for more than 2,000 years in traditional Chinese medicine to treat intermittent fevers. The artemisinin molecule – the active ingredient synthesized in this plant's trichomes – is the main component of malaria treatments worldwide. But the low content produced by the plant and the high cost of its chemical synthesis result in a scarce and costly drug.

An international team of researchers led by the Centre for Research in Agricultural Genomics (CRAG) and Sequentia Biotech S.L. has been able to obtain, through genetic engineering, Artemisia annua plants that produce twice as much artemisinin. The research team has identified a gene involved in the formation of plant trichomes and in the synthesis of terpenes, such as artemisinin. The AaMYB1 gene has a dual function: it promotes trichome formation in the leaves and artemisinin synthesis inside the trichomes. Soraya Pelaz, CRAG researcher and senior author of the study said, "By manipulating this gene, we have managed to grow plants which contain much more artemisinin than their wild-type counterparts."

The researchers at CRAG designed transgenic plants that overexpressed the AaMYB1 gene and found that they accumulated larger doses of artemisinin than non-genetically modified plants. To confirm the role of AaMYB1 gene in trichome formation, they searched for similar genes in Arabidopsis thaliana and found the gene AtMYB61. When this gene was overexpressed in the model plant, the plant produced more trichomes.

For more details, read the article in CRAG News.