Research Explains Plant Tissues' Sense of Direction

Scientists at the John Innes Centre, Norwich have discovered how complex plant shapes are formed. The work, led by Dr. Alexandra Rebocho and colleagues in Professor Enrico Coen's laboratory, could have wide implications on the understanding of shape formation, or ‘morphogenesis', in nature. Understanding how genes influence plant shape formation would lead to better-adapted and higher yielding crop varieties.

One of the prevailing theories of how complex plant shapes develop, upon which this new research builds, is the theory of 'tissue conflict resolution'. In this theory, growth outcomes depend on tissues. In isolation, individual tissue regions grow equally in all directions or elongate in a preferred direction. In reality, tissue regions do not occur in isolation, but the adhesion and cohesion between adjoining regions cause tissues to buckle, curve, or bend to a compromise state.

The three proposed types of tissue conflict resolution are areal, surface, and directional. The new research provides evidence for the third category: directional conflict. Tissues, or collections of tissues, can have a set of directions, or ‘polarity field', which is caused by the asymmetrical distribution of proteins within cells. An example of a response to this directionality is when plants grow faster parallel or perpendicular to the local polarity field.

For more information about this research, read the news release from the John Innes Centre.


 

This article is part of the Crop Biotech Update, a weekly summary of world developments in agri-biotech for developing countries, produced by the Global Knowledge Center on Crop Biotechnology, International Service for the Aquisition of Agri-Biotech Applications SEAsiaCenter (ISAAA)

Subscribe to Crop Biotech Update Newsletter
Crop Biotech Update Archive
Crop Biotech Update RSS
Biofuels Supplement RSS

Article Search: