Usefulness and limitations of a gene drive approach to vector-borne diseases control

Maria Vittoria Mancini

Polo GGB
Vector-borne diseases

Vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually.

These diseases profoundly restrict socioeconomic status and development in countries with the highest rates of infection.

Current methods of control (Insecticide Treated Nets, Indoor Residual Spraying) are good but insufficient.

Additional cost-effective & sustainable vector control methods are needed.
Gene drives for vector control
Genetic control to stop vector-borne diseases

Genetic control: the introduction of modified mosquitoes into a population to reduce or eliminate a disease

Genetic traits that work for us:
- Malaria resistance
- Inability to find a blood source
- Female infertility
- Produce only males
What is gene drive?

By using DNA-cutting enzymes called nuclease, it is possible to modify mosquito genes in a very precise way.
Options for genetic control of mosquito-borne infectious diseases

Gene drive can be used for both approaches. It allows the genetic modification to spread through a population in an efficient way.
Advantages
It has the potential to reduce mosquito populations and diseases transmission

- reduce the economic and human cost of these diseases
- reduce the environmental impact of invasive species
Long term approach
- More effective than traditional control interventions, e.g. insecticides
- Compatible with and helpful to other interventions

Self-sustaining and widely applicable
- Ability to establish in the environment and spread

Species-specific
- Reduced undesired effects on non-target organisms compared to conventional methods

Accessible
- Effective at low prevalence
- Easy to deliver /minimal infrastructure requirements
- No need of human behavioural changes
Limitations
Reduced efficacy of the technology

Genetic resistance
Drive-mediated genome alternations are expected to select resistance on each organisms on a evolutionary timescale. The evolution of resistance traits can prevent the driver from spreading.

- Mosquito/pathogen resistance: target highly conserved sites and processes at multiple sites/stages

Fitness costs
Gene drive individuals show strongly reduced fitness traits

- Improve the gene-drive technology or the target gene
Public perception and ethical concerns

1. Ethical concerns
 - The perception that the technology is an interference with nature.
 - Public engagement
 - Appropriate decision-making processes
 - Benefit sharing

2. Safety of the technology
 - The risk that gene drives are difficult to stop if unexpected effects might occur during developmental phases
 - Development of a safe and efficient technology through responsible science and thorough risk assessments
 - Mitigation strategies

3. Lack of adaptive governance
 - The novelty and the rapid progress in gene drive research created a gap in international legislations
 - Development of guidelines and recommendations (by scientists and independent regulatory authorities)

4. Transboundary movements
 - The potential to spread across national borders, resulting in international regulatory incidents
 - Implementation of supranational regulations

TARGET MALARIA
Ecological impacts

Releasing gene-drive mosquitoes for population suppression could cause long-term disruption in the ecosystem?

- Ecological studies are specifically addressing these questions
- *An. gambiae* is small fraction of invertebrate biomass
- Not known to be specialist pollinator, not 'keystone' species (in the food-chain, ecosystem)
- Largest ecological effect may be through reduction in malaria (i.e., same as bednets, etc.)
Key takeaways

The need for additional innovation in vector control interventions is increasingly apparent.

A transparent, inclusive and well-informed discussion for a responsible evaluation and development for genetic control technologies is crucial.

This discussion needs to consider the risks and benefits of this technology, together with the risks and benefits of maintaining the status quo.
Acknowledgements

“Target Malaria receives core funding from the Bill & Melinda Gates Foundation and from the Open Philanthropy Project Fund, an advised fund of Silicon Valley Community Foundation”
Thank you

TargetMalaria.org