Reproductive animal biotechnology

Some of the major advances in reproductive technologies have allowed for the production of animals that are superior in terms of performance and disease resistance. These advances have been made possible through the use of somatic nuclear transfer and cloning techniques, which involve the transfer of nuclear material from a donor cell to an enucleated egg cell, followed by in vitro fertilization and development in utero.

These technologies have been used to produce high-quality livestock, including cattle, sheep, and goats. Cloning has been used to produce animals that are genetically identical to their parent, allowing for the production of animals with specific traits, such as disease resistance or enhanced fertility.

Embryo transfer is another reproductive technology that has been used to improve livestock productivity. In embryo transfer, embryos are removed from the mother at an early stage of development and transferred to a surrogate mother for further growth and development.

These advancements in reproductive technologies have led to increased productivity and efficiency in the livestock industry. They have allowed for the production of animals that are superior in terms of performance and disease resistance, leading to increased profits for farmers and improved food security for the growing global population.

References


Pocket Ks are Pockets of Knowledge, packaged information on crop biotechnology products and related issues available at your fingertips. They are produced by the Global Knowledge Center on Crop Biotechnology (http://www.isaaa.org/kc). For more information, please contact the International Service for the Acquisition of Agri-biotech Applications (ISAAA) at SEAsiaCenter c/o IRRI, DAPO Box 7777, Metro Manila, Philippines. Tel.: +63 49 5367933 Telefax: +63 49 5367216 E-mail: knowledge.center@isaaa.org

June 2012 (No. 40)
In-vitro Fertilization. In case other artificial reproductive techniques fail due to difficulties such as blocked reproductive systems, non-responsive ovaries in the females, marginal semen quality and quantity in the male, and presence of disease, in vitro fertilization (IVF) is used. The fertilization of the sperm and the egg is conducted in vitro (outside the animal’s body) at specific environmental and biochemical conditions. To date, successful IVFs have been conducted in various animal species due to advances in embryo production and cryopreservation of reproductive cells. Since the birth of the first rabbit conceived through IVF in 1959, IVF offsprings have been born in mice, rats, hamsters, cats, guinea pig, squirrels, pigs, cows, monkeys, and humans.

Embryo Transfer. Embryo transfer (ET) from one mother to a surrogate mother makes it possible to produce several livestock progenies from a superior female. Selected females are induced to superovulate hormonally and inseminated at an appropriate time relative to ovulation depending on the species and breed. Week-old embryos are flushed out of the donor’s uterus, isolated, examined microscopically for number and quality, and inserted into the lining of the uterus of surrogate mothers.

ET increases reproductive rate of selected females, reduces disease transfer, and facilitates the development of rare and economically important genetic stocks as well as the production of several closely related and genetically similar individuals that are important in livestock breeding research. The International Embryo Transfer Society (IETS) estimated that a total of approximately 550,000 in vivo derived bovine embryos, 68,000 sheep embryos, 1,000 goat embryos were transferred worldwide in 2004.

Somatic Cell Nuclear Transfer. Somatic cell nuclear transfer (SNF) is a technique in which the nucleus (DNA) of a somatic cell is transferred into a female egg cell or oocyte in which the nucleus has been removed to generate a new individual, genetically identical to the somatic cell donor. This technique was used to generate Dolly from a differentiated adult mammary epithelial cell which demonstrated that genes that are already inactivated in differentiated tissues can be completely reactivated. NF technology creates possibility of generating clones from superior genotype and can be used to efficiently evaluate effects of genotype x environment interactions and testing or dissemination of transgenics. Problems on high rate of pregnancy loss, survival of newborn and increased incidence of abnormal development due to incorrect reprogramming of nuclear DNA (epigenetic inference) and unusual conditions during in-vitro processes make this a pre-commercial technology.

Genomics and Marker-Assisted Selection (MAS) Applications

The discovery and identification of DNA sequences or molecular markers associated with important animal traits has various applications that include trait improvement, heritability determination, and product traceability.

Molecular marker-assisted introgression (MAI). Markers are used to guide livestock breeders in selecting individuals expressing the introgressed gene. A series of backcrossing to the recipient parent is usually done in conventional breeding. With the use of molecular markers, the time and number of backcrossing cycles incurred in selection and identification of the desired individual are reduced. Today, molecular markers are being used in various livestock trait improvement activities such as growth, meat quality, wool quality, milk production and quality, and disease resistance.

Parentage, product traceability and genotype verification. Molecular markers are reliable tools used by regulatory bodies to ensure product quality and food safety. Livestock parentage and its products can be identified and traced using molecular markers from farm to the abattoir, and from the cut up carcass to consumer’s plate. A similar DNA-based technology has also been developed to detect the presence of around 211 bp fragments to facilitate testing of very small meat samples from the supermarket.

Screening for undesirable genes. Genetic diseases and physical defects can be traced and documented in livestock animals using molecular markers. The cause and origin of these problems can be easily traced to the genetic changes and DNA mutations as they manifest in the protein structure and function. With DNA testing, animals carrying these defective genes are easily identified and are culled from the livestock breeding program.

The Future of DNA-based Technology in Livestock Improvement

Currently, complete genomic sequences of important farm animals such as that of chicken and bovine have been released, and genomic sequences of pig, goat, and sheep are now in progress. With advances in sequencing farm animal genome, the continuing progress in molecular marker technology, and the use of reproductive biotechnology, windows of research opportunities will be opened to improve and revolutionize the livestock industry. In the future, it will be possible to obtain information on the genetic constitution of the animals that will allow a prediction of the production potential of an animal at birth, or perhaps even as a fetus, as well as the selection of animals best suited to a specific production environment.