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Proposition 1

It must be true that quantitative
traits are "complex’, in any sense
of the word.

Why??
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A “complex” trait involves many metabolic pathways: Roche’s Chart



Coping with complexity

(WELCOME TO THE WORLD OF ABSTRACTIONS)

First assumption: there is a genetic signal and an environmental signal
Second assumption: the joint effect translates into a phenotye y

Choices? <

Y = f(G,E) For some UNKNOWN function f

¥=E}
Y=G+E+ GE? - Is an assumption
Y = (G+E)"*?

. Y =G+ E? - Is an even a stronger assumption



GALTON’S (1822-1911) REGRESSION OF OFFSPRING
ON PARENT:
impetus for linear models

DIAGRAM BASED ox TABLE 1.
{all famalo heights are multiplied by 1'08)
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Figure 1. Galton's fitted regression modei.
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Fisher, R. A. 1918. The correlation between relatives on the
supposition of Mendelian inheritance. Transactions of the Royal
Society of Edinburgh 52:399-433.

XV.—The Correlation between Relatives on the Supposition of Mendelian Inherit-
ance.© By R. A. Fisher, BA. Communicated by Professor J. ARTHUR
Tromson. (With Four Figures in Text.)

(M8, received June 15, 1918, Read July 8, 1918,  [ssuerl separately October 1, 1918))
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DECOMPOSITION OF VARIANCE
(under some assumptions)

TOTAL VARIANCE=
ADDITIVE+DOMINANCE+EPISTATIC+ENVIRONMENTAL

TYPICALLY ADDITIVE VARIANCE IS 1-40% OF TOTAL

SELECTION (main tool) EXPLOITS ADDITIVE VARIANCE
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Data and Theory Point to Mainly Additive Genetic
Variance for Complex Traits

William G. Hill'*, Michael E. Goddard??, Peter M. Visscher?

1 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom, 2 Faculty of Land and Food Resources, University of
Melbourne, Victoria, Australia, 3 Department of Primary Industries, Victoria, Australia, 4 Queensland Institute of Medical Research, Brisbane, Australia

Abstract

The relative proportion of additive and non-additive variation for complex traits is important in evolutionary biology,
medicine, and agriculture. We address a long-standing controversy and paradox about the contribution of non-additive
genetic variation, namely that knowledge about biological pathways and gene networks imply that epistasis is important.
Yet empirical data across a range of traits and species imply that most genetic variance is additive. We evaluate the evidence
from empirical studies of genetic variance components and find that additive variance typically accounts for over half, and
often close to 100%, of the total genetic variance. We present new theoretical results, based upon the distribution of allele
frequencies under neutral and other population genetic models, that show why this is the case even if there are non-
additive effects at the level of gene action. We conclude that interactions at the level of genes are not likely to generate
much interaction at the level of variance.
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mnw (Hazel, 1943) ‘
= INPUT IN MULTIPLE-TRAIT IMPROVEMENT

Froure 1 —Standard bivarnate model used in
quantitative genetics: ¥, and Y, are the phenotypic
X I values; U} and LU} are additive genetic effects act-
ing on the traits; £y and F; are residual effects. A
single-headed arrow (e.g., A — B) indicates that
vanable A affects varable B.

Square root of heritability of trait

Tyy = T{;hxh}r —|— ?"E\/l —= h}Jl — h—%,




Breeding objectives (1936: Smith--1943: Hazel)

CONCEPTO CENTRAL DEL MEJORAMIENTO GENETICO

Merito(M) : caracteres, valor economico.

Direccion  :  extremos.intermedi

. valores optimos

intensity xorrelation (EM M) x var. genetica

eenerafion Interval

max |E (Ag)] ST : inbreeding, conservation, e — impact




Evolution of four breeding programs
BLACK= 2% per year BLUE= 1.5% per year
GREEN= 1% per year RED= 0.5% per year
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THREE PARADIGMS FOR GENETIC ANALYSIS
IN ANIMAL BREEDING




PARADIGM 1
(QTL discovery)

GWAS: search for association between
some marker or genomic region,
and a target phenotype.
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PARADIGM 2
(variance components, indexing, BLUP)

Fisher’s infinitesimal model
(extended/vectorially by C. R. Henderson)

1987




THE n<<p ERA
(In animal breeding ~1948-1973: C. R. HENDERSON)

y= Xﬁ +/7u-+e
|/ sBuRNB= zaR)

Fixed Random W~/V' (O . G)

BLUP=Best linear unbiased predictor

X'R-1X X'R-17Z
ZRX ZR'Z+G™!

"

u

MME: an algorithm

X'R™ly
Z'R 1y

BLUP= Conditional posterior mean in Bayesian Gaussian linear hierarchical model
BLUP=penalized (L2) maximum likelihood
BLUP=Similar to kriging in geostatistics

BLUP=special case of RKHS regression
BLUP=single layer NN (input= A), linear activation function




BAYESIAN INFERENCE AND
THE NEO-BAYES-LAPLACE REVOLUTION
(James-Stein, Lindley, Box, Zellner...)

Rev. Thomas Bayes

1702 London, England
1761 Tunbridge Wells, Kent, England

1763. “An essay towards solving a problem in the doctrine of chances”.
Philosophical Transactions of the Royal Society of London 53, 370-418.

Pierre-Simon Laplace

1749 Beaumont-en-Auge, France
1827 Paris, France

1774. "Mémoire sur la probabilité des causes par les événements‘il 8
Savants étranges 6, 621-656. Oeuvres 8, 27-65




THE EDINBURGH SCHOOL KEPT REMINDING
US OF THE GENES, SETTING THE STAGE
FOR THE QUANTITATIVE GENOMICS ERA:
THREE GIANTS!

1. D. S. Falconer




2. Alan Robertson
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Figure 2. The chance of fixation of a recessive gene. The curves are
drawn for different initial recessive frequencies.

THEORETICAL POPULATION BIOLOGY 5, 366-392 (1974)

Disequilibrium Among Several Linked Neutral Genes in
Finite Population

|. Mean Changes in Disequilibrium*

WiLLiam G. HiLoL

3. William G. Hill
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THE GENOMIC ERA




MASSIVE NUMBERS OF MOLECULAR MARKERS AVAILABLE: DNA sequences i
(cattle: 3 Gb; maize: 2500 Mb)

Linked SNPs
outside of gene

no effect on
protein production
or function

Causative SNPs
in gene

Non-coding SNP:
@ changes amount of _
protein produced

Coding SNP:
@ changes amino
acid sequence

¥
Protein
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Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. J. Hayes' and M. E. Goddard"*
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On Marker-Assisted Prediction of Genetic Value: Beyond the Ridge

Daniel Gianola,*' Miguel Perez-Enciso' and Miguel A. Toro*

*Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706, tStation d’Amelioration
Génélique des Animaux, Institut National de la Recherche Agronomique, 31326 Castanel-Tolosan, France and
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Genome-enabled selection

( Reference Population\ / Selection Candidate \

o ALl WLl A O a
(v /@R ';I{' u*! _ W
Known genotypes Ll Marker
and phenotypes R ;j genotypes

Prediction Equation
Genomic breeding value =
Xy + Xy + t3x3 + ...

/ Selected Breeders \

¥ [ ¢
wod : s!
L ;f
Using genomic

breeding values /




' CLASSICAL DAIRY CATTLE BREEDING ‘
Prediction of progeny performance

(progeny testing)
Milk production
data from progeny
of Bull A are
available to
Bull A is calculate his EBV.
born and is Progeny Bull A is used as
selected of Bull A a sire of sons.
based on are born.

Oyr 1yr3mo 2yr 4yr 4 yr6 mo S5yr3mo
Bull A is Progeny A
progeny of Bull A i gl
tested. cal

Lis bomn.

Classical progeny testing scheme
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Milk production
data from Great
g progeny of Bull i
BllB % S ap Grand- Barcavailable [ Z0%
born and lculate hi sons 0
Bull B sons of to calcu is Bull B
seievton Bull B EBV.
based on are born. are Borm: are born.
Oyr 1yr 1yr9mo 2yr9mo 3yr6 mo 4 yr6 mo S5yr3mo
Bull B \ ‘ \ ‘
reaches Sons of Bull Grandsons
sexual B reach of Bull B
maturity sexual reach sexual
and is used maturity and maturity and
as a sire of are used as are used as
S0NS. sires of sons. sires of sons.

TWO IMPACTS OF GENOMIC SELECTION:

ation interval drastically reduced.
enabled predictions (GEBV) may be more accur




' GENOMIC SELECTION IN DAIRY CATTLE (USA) ‘
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Evaluation date (month-year)

Figure 1

Number of genotyped animals included in US genomic evaluations for dairy cattle since January 2009. Othcial US genomic evaluations
were first released to the dairy industry in January 2009 for Holsteins and Jerseys, in August 2009 for Brown Swiss, in April 2013 for

Ayrshires, and in April 2016 for Guernseys. Data for figure generation were reported by the Council on Dairy Cattle Breeding (27).
Months without data represent months in which official evaluations were not released.

S (2017), Ann. Reviews of Anim
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Fig. 3. Genetic gain per year estimates from fouf paths of selection (Four Paths) and segmented regressions of trait PBV on birth year for all cows (All Cows) or
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PARADIGM 3:

MINE AND INTERROGATEDATA
"HYPOTHESIS-FREE DISCOVERY”,
CLASSIFY, PREDICT!

! !

(machine learning: largely non-parametric)



The return of the multi-layer
neural networks...

Simple Neural Network Deep Learning Neural Network
ﬁ

(O Hidden Layer @ Output Layer




Mathematics knows no races or

RKHS: >~ - geographic boundaries; for
. mathematics, the cultural world is

Reproducing Kernel Hilbert Spaces Regression | ° e N one country.

— David Hilbest —

AZQUOTES

SPECIAL CASES OF RKHS=>»SIMILARITY MATRICES

* BLUP using pedigrees

e BLUP using markers (GBLUP)

* Kriging in geostatistics

e lLinear combinations of kernels+ Hadamard-Product
kernels

* Genomic, enviromentomic, epigenomic, metagenomic
kernels

* G xEKERNELS
e Support vector machines in regression or classification



MULTI-OMICS OR “OTHER” OMICS

Genetic
Epidemiology

OFFICIAL JOURNAL

INTERNATIONAL GENETIC

Poly-Omic Prediction of Complex Traits: OmicKriging Eflfi“fl&fﬁay e

Heather E. Wheeler,' Keston Aquino-Michaels,? Eric R. Gamazon,? Vassily V. Trubetskoy,2 M. Eileen Dolan,'
R. Stephanie Huang,' Nancy J. Cox,? and Hae Kyung Im**

Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, linois, United States of America; 2Section of Genetic
Medicine, Department of Medicine, University of Chicago, Chicago, linois, United States of America;* Department of Health Studies, University of

Chicago, Chicago, lllinois, United States of America

Received 26 November 2013; Revised 11 March 2014; accepted revised manuscript 12 March 2014,
Published onling in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/gepi.21808

GENETICS GENOMIC SELECTION

Increased Proportion of Variance Explained and
Prediction Accuracy of Survival of Breast Cancer
Patients with Use of Whole-Genome

Multiomic Profiles

Ana |. Vazquez,*' Yogasudha Veturi," Michael Behring."* Sadeep Shrestha,’ Matias Kirst,**""

Marcio F. R. Resende, Jr.,**'" and Gustavo de los Campos*-**

*Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, 'Biostatistics
Department, *Comprehensive Cancer Center, and §Dep.mmom of Epidemiology, University of Alabama at Birmingham, Alabama
35294, **School of Forest Resources and Conservation and ""University of Florida Genetics Institute, University of Florida,
Gainesville, Florida 32611, and **Statistics Department, Michigan State University, East Lansing, Michigan 48824

ABSTRACT Whole-genome multiomic profiles hold valuable information for the analysis and prediction of disease risk and progression
However, integrating high-dimensional multilayer omic data into risk-assessment models is statistically and computationally challenging.
We describe a statistical framework, the Bayesian generalized additive model ((BGAM), and present software for integrating multilayer
high-dimensional inputs into risk-assessment models. We used BGAM and data from The Cancer Genome Atlas for the analysis and
prediction of survival after diagnosis of breast cancer. We developed a sequence of studies to (1) compare predictions based on single omics
with those based on clinical covaniates commonly used for the assessment of breast cancer patients (COV), (2) evaluate the benefits of
combining COV and omics, (3) compare models based on (a) COV and gene expression profiles from oncogenes with (b) COV and whole-
genome gene expression (WGGE) profiles, and (4) evaluate the impacts of combining multiple omics and their interactions. We report that
(1) WGGE profiles and whole-genome methylation (METH) profiles offer more predictive power than any of the COV commonly used in
dinical practice (e.g., subtype and stage), (2) adding WGGE or METH profiles to COV incareases prediction accuracy, (3) the predictive power
of WGGE profiles is considerably higher than that based on expression from large-effect oncogenes, and (4) the gain in prediction accuracy
when combining multiple omics is consistent. Our results show the feasibility of omic integration and highlight the importance of WGGE
and METH profiles in breast cancer, achieving gains of up to 7 points area under the curve (AUC) over the COV in some cases.

Theor Appl Genet (2014) 127:595-607
DOI 10.1007/s00122-013-2243-1

ORIGINAL PAPER

A reaction norm model for genomic selection using
high-dimensional genomic and environmental data

Diego Jarquin - José Crossa - Xavier Lacaze + Philippe Du Cheyron
Joélle Daucourt * Josiane Lorgeou * Francois Piraux - Laurent Guerreiro *
Paulino Pérez - Mario Calus * Juan Burgueno + Gustavo de los Campos

sENETICS
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GENOMIC SELECTION

Prediction of Plant Height in Arabidopsis thaliana
Using DNA Methylation Data

Yaodong Hu,*' Gota Morota,' Guilherme J. M. Rosa,** and Daniel Gianola***

*Department of Animal Sciences, *Department of Biostatistics and Medical Informatics, and §Department of Dairy Scence,
University of Wisconsin, Madison, Wisconsin 53706, and "Department of Animal Science, University of Nebraska, Lincoln, Nebraska
68583




STRETCHING THE BORDERS!

Pérez-Enciso and Steibel Genet Sel Evol (2021) 53:22 G ti
https://doi.org/10.1186/512711-021-00618-1 e .I .
Selection
Evolution

OPINION Open Access

.. . ™
Phenomes: the current frontier in animal i

breeding

Miguel Pérez-Enciso'*"® and Juan P. Steibel**

a Behavioral phenotyping b Genomics and other phenotypes
Animals
1234567891011 12

Commercial trait

Animals
6789

|
|
r

Individual phenatype

received aggression intensity

ehavioral traits measured with .

arable sensors and computer R

Individual phenotype:
intensity of delivered aggression

p————
¢ Classic modeling o ~ d Novel models

Multi-trait model with Social effect Predict dyadic J_Qil'll Pfﬂldiﬂiﬂ'l of
individual behavior model: production interactions from interactions and
and production trait trait and social genomic information ~ production trait
x interaction matrix x
(w) = f(M) x=f(M,7) = ) (7)=ron
2 4

Fig. 1 Emerging behavioral data in the phenomics era and the need for new models. a Behavioral phenotyping for social interactions results in
a matrix of dyadic interactions, Zs, that can be collapsad to individual behavioral data (w and y). b Existing genomics and phenomics data can
be integrated with behavioral phenotypes. ¢ Classic genomic evaluation models focus on multi-trait analyses of individual behaviors or on social
genetic effects models where the interaction matrix is used as a predictor of existing phenotypes. d In novel models, multi-trait analyses have to
include full behavioral matrices to be able to predict the dyadic Interactions from rker data




GENOMIC EPIDEMIOLOGY: PANDEMICS AND ZOONOSIS

MOST MUTATED

The Omicron variant of the SARS-CoV-2 coronavirus has more mutations than any known predecessor. A R - V_ : !
This chart shows mutations in the S1 subunit of the spike protein, which attaches to host cells.
o Origin ®Alpha eBeta ®Delta *Omicron(BA1) ®Omicron (BA.2) ® Other
30 8-
LR ]
s : sistee) OMICRON TAKEOVER
- CoLeie) Omicron has quickly spread to become the world’s
» P read dominant variant of the SARS-CoV-2 coronavirus — as
£ 25 ';D‘:“' shown by its prevalence in viral genomes uploaded to
g . the GISAID database from various regions.
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No. mutaciones proteina espicula . Mayormente neutrales (sinventajas
adaptativas); algunas incrementan en frecuencia, otras son desplazadas. De Nature

MISSING GENOMES Omicron: porcentaje en muestras

The GISAID database contains sequenced SARS-CoV-2 genomes representing less secuenciadas en diferentes continentes.
than 1% of the reported COVID-19 cases in each of Africa, Asia and South America. Nature (2022)

Oceania

trica [ Casos SARS-COV-2 examinados a nivel molecular
asia [JIEEDY para mutaciones y seguimiento epidemiolégico. Nature (20

South America m

©nature

Dala as of 27 January 2022.



AGRO-ECOGENOMICS

3/17/2021 "Stop UE-Mercosur”: contra un acuerdo que ignora el bienestar animal | Europa | DW | 16.03.2021

o BILL GATES

HOW TO B
AVOID A

f-uéo*::)p UE-Mercosur": contra un acuerdo que ignora el D I S A ST E R 0 N ‘

bienestar animal

) A ¢ ionas B v : " . i i R gl THE SOLUTIONS WE HAME AND THE
Para mas de 450 organizaciones, el acuerdo entre UE y Mercosur traeria pocas bondades y muchos problemas. No se alinea

con el futuro \:vrcln- que propone Europa, con la proteccion medioambiental v del bienestar animal. B’EAHIHHE’HEHS H-E -HEEE

'I'HE The (Burning) Case for a
CREEN GREEN NEW DEAL

it TR| NAGMI KLEIN

WHY THE FOSSIL FUEL CIVILIZATION
WILL COLLAPSE BY 2028,
and THE BOLD ECONOMIC PLAN
TO SAVE LIFE ON EARTH

"Aunque si hay sectores que se beneficiarian del acuerdo entre la Unién Europea (UE) v los paises del Mercosur, la cadena de cosas negativas JEHEMY RIFK'N

. NEW YORK TIMES BESTSELLING AUTHOR OF
que traeria para los ciudadanos de ambos lados del océano, para el medioambiente, para los animales y para la salud humana no lo ToE TRIRD THOUE R TAL REVILTTION

BEoOEE

compensa”, explica a DW Daniel Pérez Vega, portavoz de Eurogroup for Animals

En esta plataforma confluyen 70 organizaciones europeas, que a su vez integran ¢l movimiento "Stop UE-Mercosur”: sus mis de 450

miembros firman el llamamiento a oponerse a un acuerdo que, segin diversos anilisis, dista mucho de aportar a un futuro mis verde y

sustentable.
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BREEDING 1.0

Incidental selection
by farmers

r.. ANNUAL
I REVIEWS

Arnunal Review of Genetics

BREEDING 2.0

Statistical and
experimental design
to improve selection

Jason G. Wallace,! Eli Rodgers-Melnick,”
and Edward §. Buckler'*

effort
BREEDING 3.0 oo -
Integration of —: —1
genetic and — e THE
genomic data; = -
current state of = et C O D [
the art = =
sl -_— E
& = 1R 2 I
E=_E5 BREAKER

Jennifer Doudna, Gene Editing.

s ret Future of the Human Racs

BREEDING 4.0

Ability to combine
any known alleles
into optimal
combinations; will
be reached soon for
some crops




AGRI PHARMACOGENOMICS

Potentials and Challenges of
Genomics for Breeding
Cannabis Cultivars

Gianni Barcaccia”, Fabio Palumbo, Francesco Scariolo, Alessandro Vannozzi,
Marcello Borin and Stefano Bona

Pomegranate Breeding: Utilization of Molecular and Genetic Data for
Improvement of Fruit Quality and Adaptation to Different Climatic
Conditions

R. Harel- Bela I. Bar-Ya’ akov!, K. Hatlb T. Tlamm Z.. Ben- Sunhon D. Holland',
R Eshed”, M. Sharabl M. Rubmste1n R. Ophir” and A. Sherman>
I'Unit of Deciduous Fruit Tree St_lenc.es Newe Ya’ar Research Center, Agricultural
, Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
2 Genomic Unit, Plant Sciences Institute, Volcani Center, Agr icultural Research
Organization, PO Box 6, Bet Dagan 50250 Israel

Keywords: Pwunica granatum 1., germplasm collection, segregating populations,
transcriptome, SNP markers, genetic map



LOOKING BACKWARDLY AND FORWARDLY...

Lraroms Lindgyist
Cm P Rajes (dlon

| Paleo-

’j ;.‘: .rl " % \-
. - . ql F \
genomics b e

BRISCOE

INTRODUCTION TO

CONSERVATION
GENETICSA




REMARK 1. Breeding objectives (1936: Smith--1943: Hazel)

BUT WHAT DO WE BREED FOR TODAY?

H = aggregate genetic value. Includes trait genotypes to improve
THAT MATTER in some merit function (linear or non-linear)
and their (socioeconomic) values
y|X = vector of RELEVANT MEASURES and explanatory variables
H.y = Must have a statistical non-trivial joint distribution such that
Entropy(H) > Entropy(Hly)

[animal breeders live in a flat earth and use correlation]
TODAY’S WAPATULI:
Brittleness, fragility, robustness, resilience, sustainability, animal welfare (activity, sociability, inclusiveness,
dignity, flatulence, biometrics), epigenome, interactome, metagenome, environmental frailtome,
noiseome, eco-friendliness, drones, sensors, images, smart phones, infra-red measures, spectrometry,

metabolome, “chipomics”, crops and livestock models

plus STILL relevant production, reproduction and health, pedigree



REMARK 2. Diatribes: the learning triangle

BUILD FOUNDATIONS
(IF TIME PERMITS)
NORMATIVE DISCOVER, -
WRITE THESIS, Paper 3
PAPERS, PATENTS
REVIEW LITERATURE, MENU OF
INTEGRATE AND DREAM THE DAY
Paper
1

e Algorithms, software, visualization used by students with
deficiencies in biology, experimental design, causality, logic,
and statistical science. Basic science fundamental.

* Breeding objectives cannot be delineated by specialists.

Al will not generate fertile interactions if compartments d
ot intersect

BUILD FOUNDATIONS




