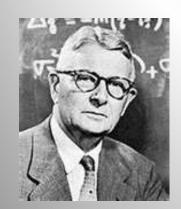
From Galton to Machine Learning: a brief account of quantitative methods in animal genetics

Daniel Gianola

Sewall Wright Professor Emeritus of Animal Breeding and Genetics

University of Wisconsin Madison, USA

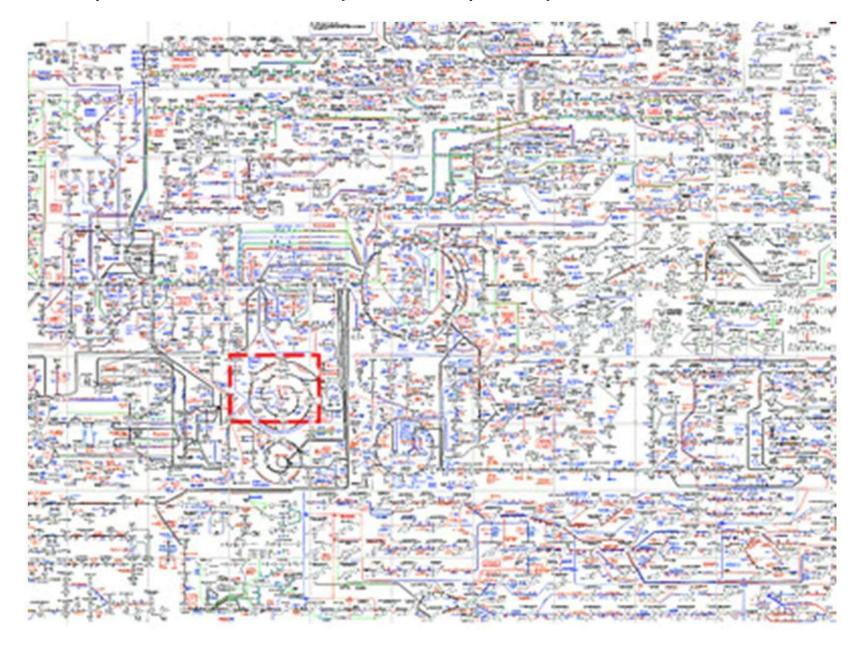


Proposition 1

It must be true that quantitative traits are "complex", in any sense of the word.

Why?

A "complex" trait involves many metabolic pathways: Roche's Chart



Coping with complexity

(WELCOME TO THE WORLD OF ABSTRACTIONS)

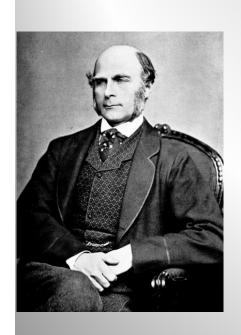
First assumption: there is a genetic signal and an environmental signal Second assumption: the joint effect translates into a phenotye y

$$Y = f(G, E)$$
 For some **UNKNOWN** function f

 $Y = G^E?$ $Y = E^G?$ Y = G + E + GE? $Y = (G + E)^{GE}?$ Y = G + E?Is an even a stronger assumption

GALTON'S (1822-1911) REGRESSION OF OFFSPRING ON PARENT:

impetus for linear models



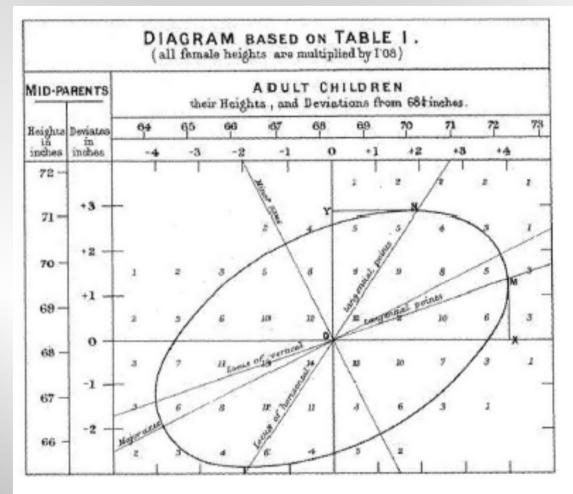
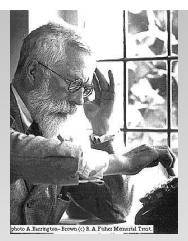


Figure 1. Galton's fitted regression model.

Sewall Wright



R. A. Fisher

J. B. S. Haldane

SCIENTIFIC FOUNDATIONS OF ANIMAL (PLANT) BREEDING

Jay L. Lush, Iowa State University (animal breeding)

Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52:399-433.

XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. By R. A. Fisher, B.A. Communicated by Professor J. ARTHUR THOMSON. (With Four Figures in Text.)

(MS, received June 15, 1918. Read July 8, 1918. Issued separately October 1, 1918.)

CONTENTS.

1.	The superposition of fac	tors	listri	buted	ind	e-	PAGE	15.	Homogamy and multiple allelo.
	pendently						402		Coupling
2.	Phase frequency in each						402		Theories of marital correlati
3.	Parental regression .						403		correlations
	Dominance deviations						403	18.	Ancestral correlations (secon
	Correlation for parent;				ions		404		theories)
	va						405	19.	Numerical values of association
7.	Correlations for other re	lative	8				406	20,	Fraternal correlation
8.	Epistacy						408	21.	Numerical values for environment
	Assortative mating .						410		nance ratios; analysis of vari
							410	22.	Other relatives
11.	Association of factors						411	23.	Numerical values (third theory)
12.	Conditions of equilibrium	m					412	24.	Comparison of results
13.	Nature of association						413		Interpretation of dominance rat
14.	Multiple allelomorphism						415	26.	Summary

DECOMPOSITION OF VARIANCE (under some assumptions)

TOTAL VARIANCE=

ADDITIVE+DOMINANCE+EPISTATIC+ENVIRONMENTAL

TYPICALLY ADDITIVE VARIANCE IS 1-40% OF TOTAL

SELECTION (main tool) EXPLOITS ADDITIVE VARIANCE

OPEN & ACCESS Freely available online

PLOS GENETICS

Data and Theory Point to Mainly Additive Genetic Variance for Complex Traits

William G. Hill^{1*}, Michael E. Goddard^{2,3}, Peter M. Visscher⁴

1 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom, 2 Faculty of Land and Food Resources, University of Melbourne, Victoria, Australia, 3 Department of Primary Industries, Victoria, Australia, 4 Queensland Institute of Medical Research, Brisbane, Australia

Abstract

The relative proportion of additive and non-additive variation for complex traits is important in evolutionary biology, medicine, and agriculture. We address a long-standing controversy and paradox about the contribution of non-additive genetic variation, namely that knowledge about biological pathways and gene networks imply that epistasis is important. Yet empirical data across a range of traits and species imply that most genetic variance is additive. We evaluate the evidence from empirical studies of genetic variance components and find that additive variance typically accounts for over half, and often close to 100%, of the total genetic variance. We present new theoretical results, based upon the distribution of allele frequencies under neutral and other population genetic models, that show why this is the case even if there are non-additive effects at the level of gene action. We conclude that interactions at the level of genes are not likely to generate much interaction at the level of variance.

THE GENETIC CORRELATION (Hazel, 1943) **→**INPUT IN MULTIPLE-TRAIT IMPROVEMENT

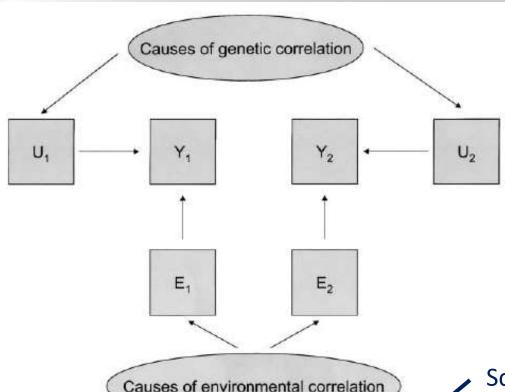


FIGURE 1.-Standard bivariate model used in quantitative genetics: Y1 and Y2 are the phenotypic values; U1 and U2 are additive genetic effects acting on the traits; E1 and E2 are residual effects. A single-headed arrow (e.g., $A \rightarrow B$) indicates that variable A affects variable B.

Causes of environmental correlation

Square root of heritability of trait Y

$$r_{XY} = r_G h_X h_Y + r_E \sqrt{1 - h_X^2} \sqrt{1 - h_Y^2}$$

Genetic correlation

Environmental correlation

Breeding objectives (1936: Smith--1943: Hazel)

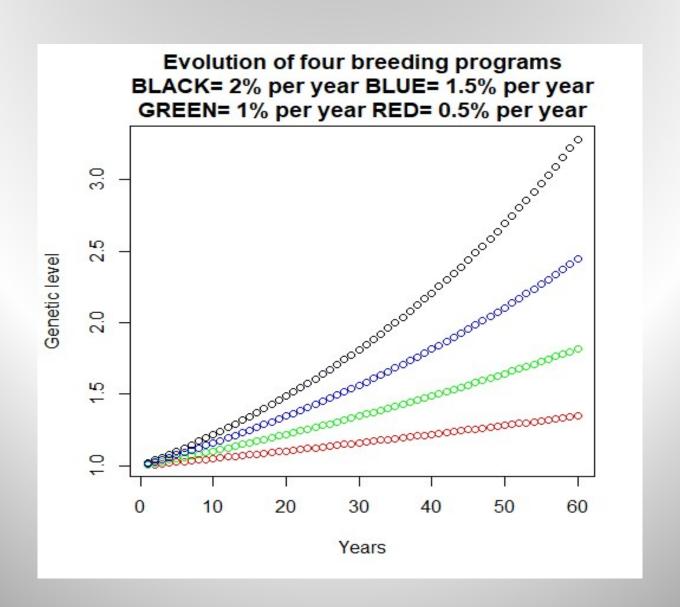
CONCEPTO CENTRAL DEL MEJORAMIENTO GENETICO

Merito(M): caracteres, valor economico,

Direccion: extremos, intermedios, valores optimos

 $E(\Delta_G) = \frac{\text{intensity} \times \text{correlation}(EM, M) \times \text{var. genetica}}{\text{generation interval}}$

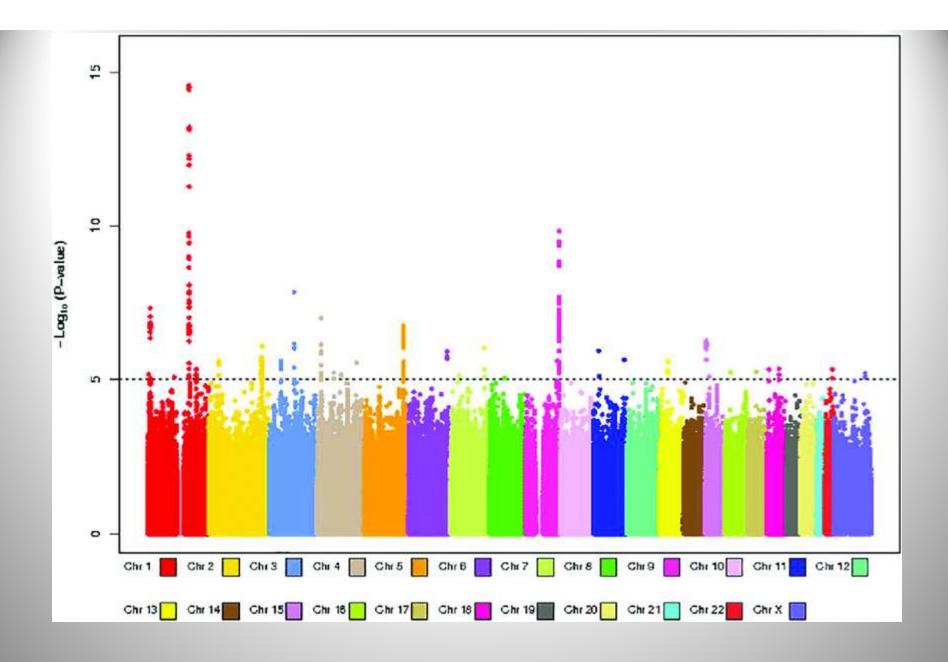
 $\max [E(\Delta_G)]$ ST : inbreeding, conservation, e-impact



THREE PARADIGMS FOR GENETIC ANALYSIS IN ANIMAL BREEDING

PARADIGM 1 (QTL discovery)

GWAS: search for association between some marker or genomic region, and a target phenotype.



PARADIGM 2

(variance components, indexing, BLUP)

Fisher's infinitesimal model

(extended vectorially by C. R. Henderson)

THE n<<pre>p ERA

(In animal breeding ~1948-1973: C. R. HENDERSON)

BLUP=Best linear unbiased predictor

BLUP= Conditional posterior mean in Bayesian Gaussian linear hierarchical model

BLUP=penalized (L2) maximum likelihood

BLUP=Similar to kriging in geostatistics

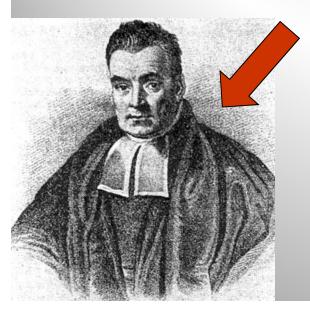
BLUP=special case of RKHS regression BLUP=single layer NN (input= A), linear activation function

BAYESIAN INFERENCE AND THE NEO-BAYES-LAPLACE REVOLUTION (James-Stein, Lindley, Box, Zellner...)

Rev. Thomas Bayes

1702 London, England1761 Tunbridge Wells, Kent, England

1763. "An essay towards solving a problem in the doctrine of chances". *Philosophical Transactions of the Royal Society of London* **53**, 370-418.

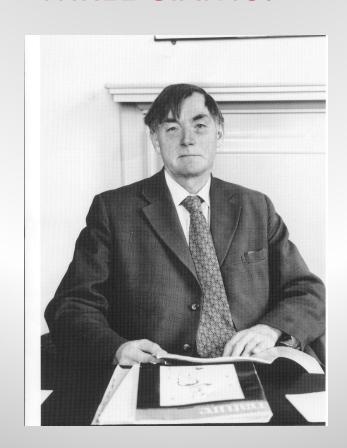


Pierre-Simon Laplace

1749 Beaumont-en-Auge, France 1827 Paris, France

1774. "Mémoire sur la probabilité des causes par les événements" 18 Savants étranges 6, 621-656. Oeuvres 8, 27-65

THE EDINBURGH SCHOOL KEPT REMINDING US OF THE GENES, SETTING THE STAGE FOR THE QUANTITATIVE GENOMICS ERA: THREE GIANTS!



1. D. S. Falconer

2. Alan Robertson

$$u(q) = \frac{\int_{0}^{q} e^{-2Nsq^{2}} dq}{\int_{0}^{1} e^{-2Nsq^{2}} dq}.$$

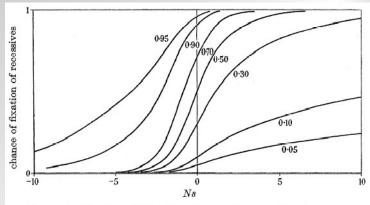


Figure 2. The chance of fixation of a recessive gene. The curves are drawn for different initial recessive frequencies.

THEORETICAL POPULATION BIOLOGY 5, 366-392 (1974)

Disequilibrium Among Several Linked Neutral Genes in Finite Population

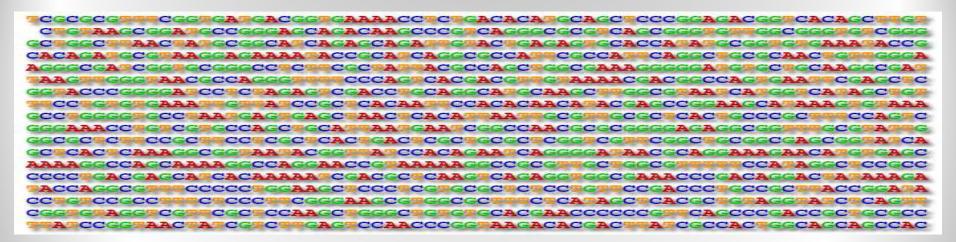
I. Mean Changes in Disequilibrium*

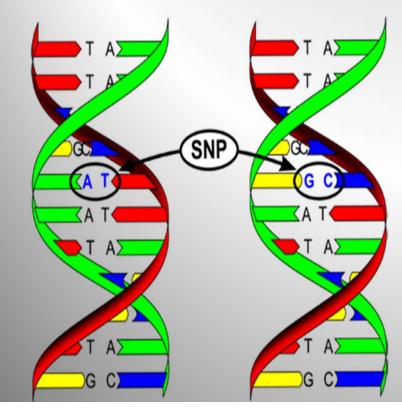
WILLIAM G. HILL

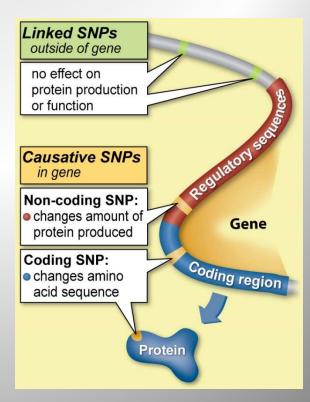
3. William G. Hill

THE GENOMIC ERA

MASSIVE NUMBERS OF MOLECULAR MARKERS AVAILABLE: DNA sequences (cattle: 3 Gb; maize: 2500 Mb)







Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. J. Hayes† and M. E. Goddard†,‡

*Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, †Victorian Institute of Animal Science, Attwood 3049, Victoria, Australia and ‡Institute of Land and Food Resources, University of Melbourne, Parkville 3052, Victoria, Australia

Manuscript received August 17, 2000 Accepted for publication January 17, 2001

Copyright © 2003 by the Genetics Society of America

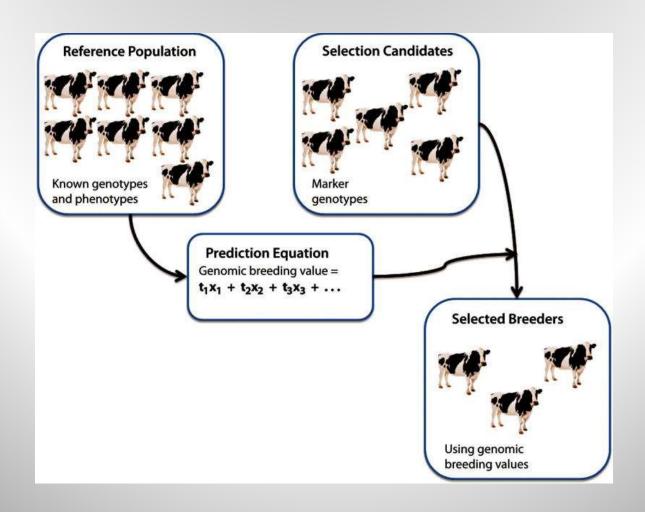
On Marker-Assisted Prediction of Genetic Value: Beyond the Ridge

Daniel Gianola,**,1 Miguel Perez-Enciso† and Miguel A. Toro‡

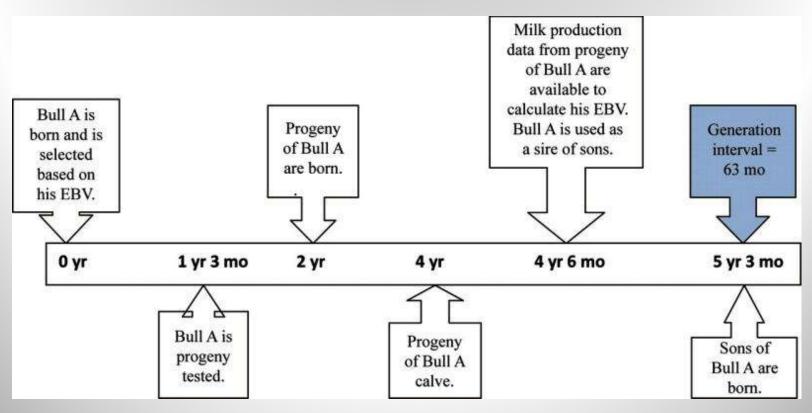
*Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706, †Station d'Amelioration Génétique des Animaux, Institut National de la Recherche Agronomique, 31326 Castanet-Tolosan, France and †Departamento de Mejora Genética Animal, Instituto Nacional de Investigaciones Agrarias, 28040-Madrid, Spain

> Manuscript received May 3, 2002 Accepted for publication September 27, 2002

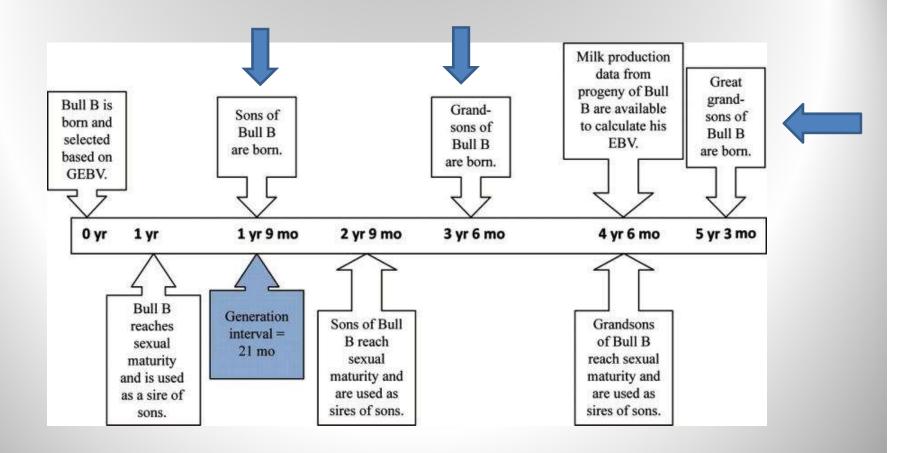
Genome-enabled selection



CLASSICAL DAIRY CATTLE BREEDING Prediction of progeny performance (progeny testing)



Classical progeny testing scheme



TWO IMPACTS OF GENOMIC SELECTION:

- 1) Generation interval drastically reduced.
- 2) Genome-enabled predictions (GEBV) may be more accurate than EBV

GENOMIC SELECTION IN DAIRY CATTLE (USA)

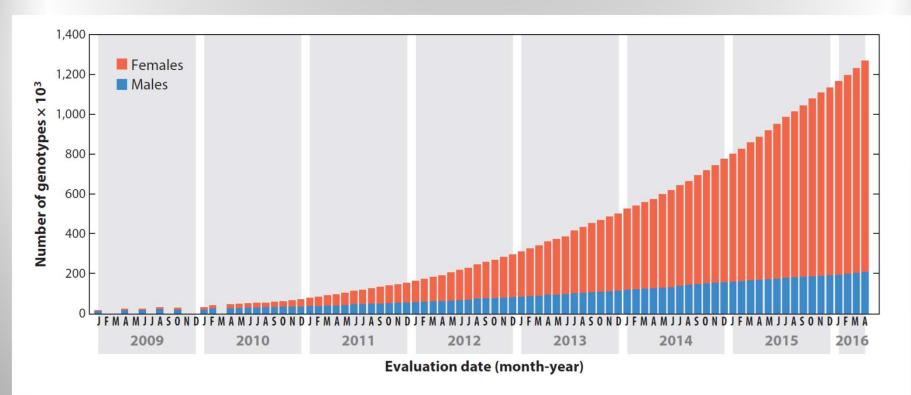


Figure 1

Number of genotyped animals included in US genomic evaluations for dairy cattle since January 2009. Official US genomic evaluations were first released to the dairy industry in January 2009 for Holsteins and Jerseys, in August 2009 for Brown Swiss, in April 2013 for Ayrshires, and in April 2016 for Guernseys. Data for figure generation were reported by the Council on Dairy Cattle Breeding (27). Months without data represent months in which official evaluations were not released.

WIGGANS (2017), Ann. Reviews of Animal Biosciences

RECENT ESTIMATES OF GENOMIC BREEDING VALUE TRENDS

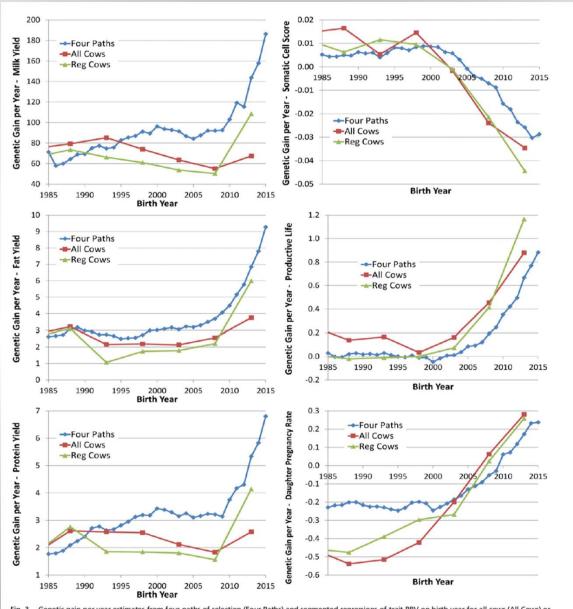


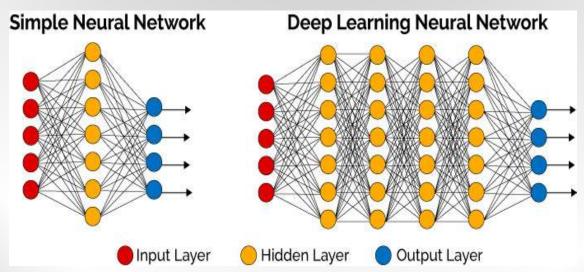
Fig. 3. Genetic gain per year estimates from four paths of selection (Four Paths) and segmented regressions of trait PBV on birth year for all cows (All Cows) or the subset of cows registered in the national herdbook (Reg Cows) for six traits (milk, fat, and protein yields; SCS; PL; and DPR).

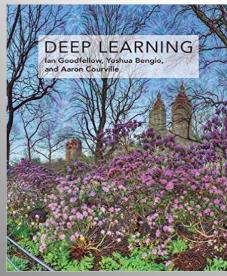
PARADIGM 3:

MINE AND INTERROGATEDATA "HYPOTHESIS-FREE DISCOVERY", CLASSIFY, PREDICT!

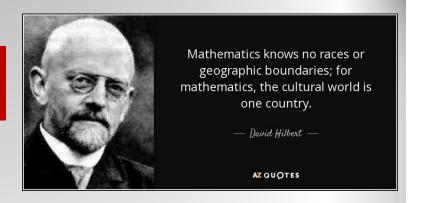
(machine learning: largely non-parametric)

The return of the multi-layer neural networks...





RKHS: Reproducing Kernel Hilbert Spaces Regression



SPECIAL CASES OF RKHS→SIMILARITY MATRICES

- BLUP using pedigrees
- BLUP using markers (GBLUP)
- Kriging in geostatistics
- Linear combinations of kernels+ Hadamard-Product kernels
- Genomic, enviromentomic, epigenomic, metagenomic kernels
- G x E KERNELS
- Support vector machines in regression or classification

MULTI-OMICS OR "OTHER" OMICS

Genetic Epidemiology

Poly-Omic Prediction of Complex Traits: OmicKriging

Heather E. Wheeler, Keston Aguino-Michaels, Eric R. Gamazon, Vassily V. Trubetskov, M. Eileen Dolan, R. Stephanie Huang, 1 Nancy J. Cox, 2 and Hae Kyung Im3*

¹Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America; ²Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America; 3 Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America

Received 26 November 2013: Revised 11 March 2014: accepted revised manuscript 12 March 2014. Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/gepi.21808

Theor Appl Genet (2014) 127:595-607 DOI 10.1007/s00122-013-2243-1

ORIGINAL PAPER

A reaction norm model for genomic selection using high-dimensional genomic and environmental data

Diego Jarquín · José Crossa · Xavier Lacaze · Philippe Du Cheyron · Joëlle Daucourt · Josiane Lorgeou · François Piraux · Laurent Guerreiro · Paulino Pérez · Mario Calus · Juan Burgueño · Gustavo de los Campos

HIGHLIGHTED ARTICLE GENETICS | GENOMIC SELECTION

Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer Patients with Use of Whole-Genome **Multiomic Profiles**

Ana I. Vazquez,*.1 Yogasudha Veturi,† Michael Behring,*.6 Sadeep Shrestha,6 Matias Kirst,**.11 Marcio F. R. Resende, Jr., **. and Gustavo de los Campos *. 11

*Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, [†]Biostatistics Department, [‡]Comprehensive Cancer Center, and [§]Department of Epidemiology, University of Alabama at Birmingham, Alabama 35294, **School of Forest Resources and Conservation and ^{††}University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611, and ^{‡‡}Statistics Department, Michigan State University, East Lansing, Michigan 48824

ABSTRACT Whole-genome multiomic profiles hold valuable information for the analysis and prediction of disease risk and progression However, integrating high-dimensional multilayer omic data into risk-assessment models is statistically and computationally challenging. We describe a statistical framework, the Bayesian generalized additive model ((BGAM), and present software for integrating multilayer high-dimensional inputs into risk-assessment models. We used BGAM and data from The Cancer Genome Atlas for the analysis and prediction of survival after diagnosis of breast cancer. We developed a sequence of studies to (1) compare predictions based on single omics with those based on clinical covariates commonly used for the assessment of breast cancer patients (COV), (2) evaluate the benefits of combining COV and omics, (3) compare models based on (a) COV and gene expression profiles from oncogenes with (b) COV and wholegenome gene expression (WGGE) profiles, and (4) evaluate the impacts of combining multiple omics and their interactions. We report that (1) WGGE profiles and whole-genome methylation (METH) profiles offer more predictive power than any of the COV commonly used in clinical practice (e.g., subtype and stage), (2) adding WGGE or METH profiles to COV increases prediction accuracy, (3) the predictive power of WGGE profiles is considerably higher than that based on expression from large-effect oncogenes, and (4) the gain in prediction accuracy when combining multiple omics is consistent. Our results show the feasibility of omic integration and highlight the importance of WGGE and METH profiles in breast cancer, achieving gains of up to 7 points area under the curve (AUC) over the COV in some cases.

HIGHLIGHTED ARTICLE GENETICS | GENOMIC SELECTION

Prediction of Plant Height in Arabidopsis thaliana **Using DNA Methylation Data**

Yaodong Hu,*.1 Gota Morota,† Guilherme J. M. Rosa,*.4 and Daniel Gianola*.48

*Department of Animal Sciences, *Department of Biostatistics and Medical Informatics, and *Spental Sciences, *Department of Dairy Science, University of Wisconsin, Madison, Wisconsin 53706, and †Department of Animal Science, University of Nebraska, Lincoln, Nebraska

STRETCHING THE BORDERS!

Pérez-Enciso and Steibel *Genet Sel Evol* (2021) 53:22 https://doi.org/10.1186/s12711-021-00618-1

OPINION Open Access

Phenomes: the current frontier in animal breeding

Miguel Pérez-Enciso^{1,2*} and Juan P. Steibel^{3,4}

Behavioral traits measured with wearable sensors and computer vision

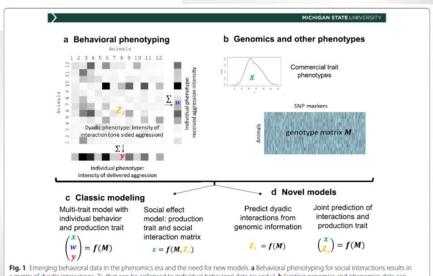
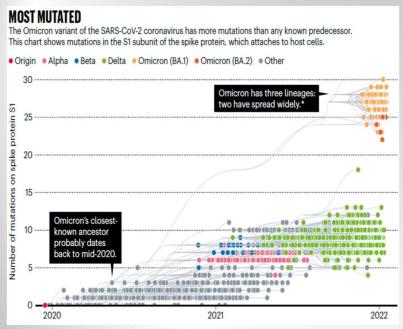
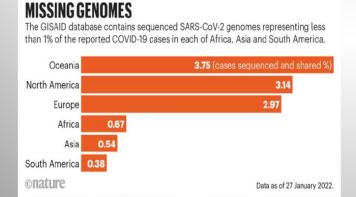


Fig. 1 Emerging behavioral data in the phenomics era and the need for new models. a Behavioral phenotyping for social interactions results in a matrix of dyadic interactions, Zs, that can be collapsed to individual behavioral data (w and y). b Existing genomics and phenomics data can be integrated with behavioral phenotypes. c Classic genomic evaluation models focus on multi-trait analyses of individual behaviors or on social genetic effects models where the interaction matrix is used as a predictor of existing phenotypes. d in novel models, multi-trait analyses have to include full behavioral matrices to be able to predict the dyadic interactions from riker data

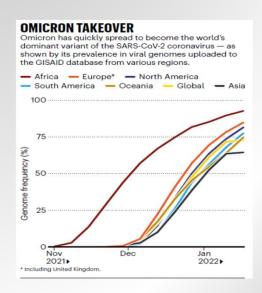
GENOMIC EPIDEMIOLOGY: PANDEMICS AND ZOONOSIS



No. mutaciones proteína espícula . Mayormente neutrales (sinventajas adaptativas); algunas incrementan en frecuencia, otras son desplazadas. De Nature (2022)



SARS-COV-2



Omicron: porcentaje en muestras secuenciadas en diferentes continentes. Nature (2022)

Casos SARS-COV-2 examinados a nivel molecular para mutaciones y seguimiento epidemiológico. Nature (2022).

AGRO-ECOGENOMICS

3/17/2021

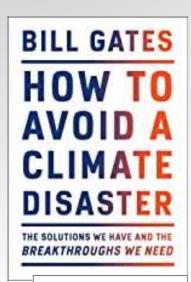
"Stop UE-Mercosur": contra un acuerdo que ignora el bienestar animal | Europa | DW | 16.03.2021

"Stop UE-Mercosur": contra un acuerdo que ignora el bienestar animal

Para más de 450 organizaciones, el acuerdo entre UE y Mercosur traería pocas bondades y muchos problemas. No se alinea con el futuro verde que propone Europa, con la protección medioambiental y del bienestar animal.

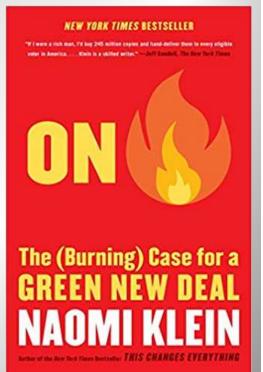
"Aunque sí hay sectores que se beneficiarían del acuerdo entre la Unión Europea (UE) y los países del Mercosur, la cadena de cosas negativas que traería para los ciudadanos de ambos lados del océano, para el medioambiente, para los animales y para la salud humana no lo compensa", explica a DW Daniel Pérez Vega, portavoz de Eurogroup for Animals.

En esta plataforma confluyen 70 organizaciones europeas, que a su vez integran el movimiento "Stop UE-Mercosur": sus más de 450 miembros firman el llamamiento a oponerse a un acuerdo que, según diversos análisis, dista mucho de aportar a un futuro más verde y sustentable

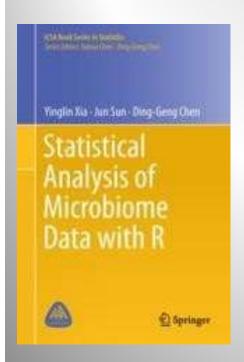


WILL COLLAPSE BY 2028, and THE BOLD ECONOMIC PLAN TO SAVE LIFE ON EARTH

THE THIRD INDUSTRIAL REVOLUTION



METAGENOMICS



Received: 2 July 2019	Revised: 17 September 2019	Accepted: 18 September 2019	
DOI: 10.1111/jbg.12444			
ORIGINAL A	PTICLE		Animal Breeding and Genetics WILEY

Structural equation models to disentangle the biological relationship between microbiota and complex traits: Methane production in dairy cattle as a case of study

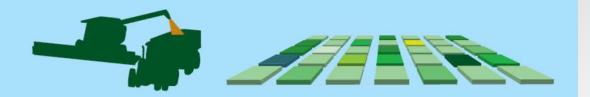
```
Alejandro Saborío-Montero<sup>1,2</sup> | Mónica Gutiérrez-Rivas<sup>1</sup> | Aser García-Rodríguez<sup>3</sup> | Raquel Atxaerandio<sup>3</sup> | Idoia Goiri<sup>3</sup> | Evangelina López de Maturana<sup>4</sup> | José Antonio Jiménez-Montero<sup>5</sup> | Rafael Alenda<sup>6</sup> | Oscar González-Recio<sup>1,6</sup> |
```

BREEDING 1.0

Incidental selection by farmers

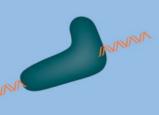
BREEDING 2.0

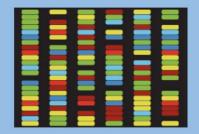
Statistical and experimental design to improve selection effort

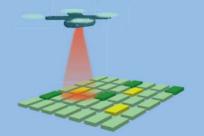


BREEDING 3.0

Integration of genetic and genomic data; current state of the art

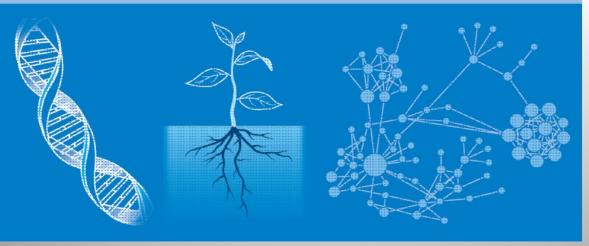






BREEDING 4.0

Ability to combine any known alleles into optimal combinations; will be reached soon for some crops

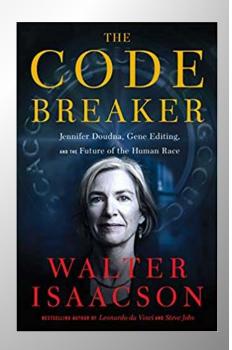


Annual Review of Genetics

On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics

Jason G. Wallace, ¹ Eli Rodgers-Melnick, ² and Edward S. Buckler^{3,4}

**Department of Crop and Sull Sciences, The University of Georgia, Adam Georgia 19602, USA, small-juois, willarethiga arbs
**Carrier Agrinistres, Dev Dalbast, Johnson, Sows 19111, USA
**United Seaso Department of Agricultura, Agricultural Research Service, these, New York 1851, USA



AGRI PHARMACOGENOMICS

Potentials and Challenges of Genomics for Breeding Cannabis Cultivars

Gianni Barcaccia*, Fabio Palumbo, Francesco Scariolo, Alessandro Vannozzi, Marcello Borin and Stefano Bona

Pomegranate Breeding: Utilization of Molecular and Genetic Data for Improvement of Fruit Quality and Adaptation to Different Climatic Conditions

R. Harel-Beja¹, I. Bar-Ya'akov¹, K. Hatib¹, T. Trainin¹, Z. Ben-Simhon¹, D. Holland¹, R. Eshed², M. Sharabi², M. Rubinstein², R. Ophir² and A. Sherman²

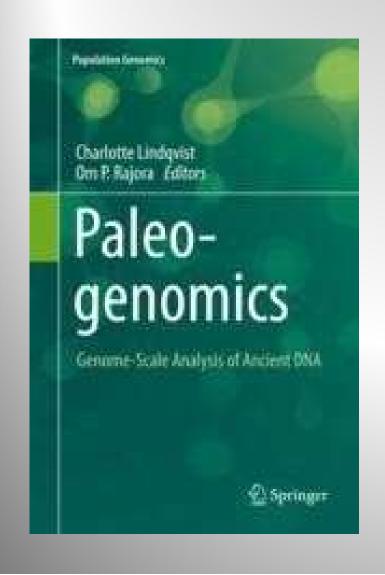
¹ Unit of Deciduous Fruit Tree Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel

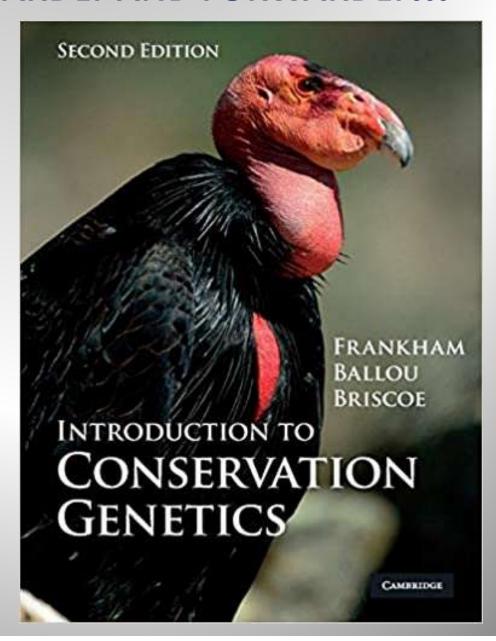
Research Organization, PO Box 1021, Ramat Yishay 30095, Israel

Genomic Unit, Plant Sciences Institute, Volcani Center, Agricultural Research Organization, PO Box 6, Bet Dagan 50250, Israel

Keywords: Punica granatum L., germplasm collection, segregating populations, transcriptome, SNP markers, genetic map

LOOKING BACKWARDLY AND FORWARDLY ...





REMARK 1. Breeding objectives (1936: Smith--1943: Hazel) BUT WHAT DO WE BREED FOR TODAY?

 $H={
m aggregate}$ genetic value. Includes trait genotypes to improve THAT MATTER in some merit function (linear or non-linear) and their (socioeconomic) values

 $\mathbf{y}|\mathbf{X}$ = vector of RELEVANT MEASURES and explanatory variables

 $H, \mathbf{y} = Must$ have a statistical non-trivial joint distribution such that

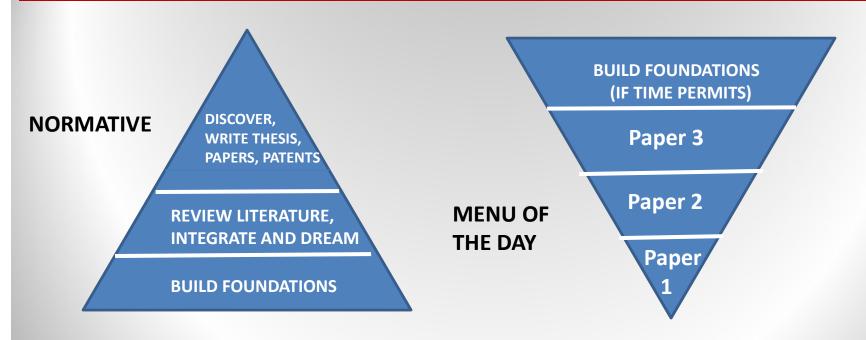
 $Entropy(H) > Entropy(H|\mathbf{y})$ [animal breeders live in a flat earth and use correlation]

TODAY'S WAPATULI:

Brittleness, fragility, robustness, resilience, sustainability, animal welfare (activity, sociability, inclusiveness, dignity, flatulence, biometrics), epigenome, interactome, metagenome, environmental frailtome, noiseome, eco-friendliness, drones, sensors, images, smart phones, infra-red measures, spectrometry, metabolome, "chipomics", crops and livestock models

plus STILL relevant production, reproduction and health, pedigree

REMARK 2. Diatribes: the learning triangle



- Algorithms, software, visualization used by students with deficiencies in biology, experimental design, causality, logic, and statistical science. Basic science fundamental.
- Breeding objectives cannot be delineated by specialists.
- Al will not generate fertile interactions if compartments do not intersect