

Genome editing in aquaculture species

Ross Houston

Regulation of Animal Biotechnology Webinar, 04/11/2020

THE UNIVERSITY of EDINBURGH

Selective breeding in aquaculture

- Domestication of aquaculture species is recent and ongoing
- Production is based on numerous and diverse species
- Family-based breeding programmes with genomic selection in few species, e.g.
 - Salmon and trout
 - Nile tilapia
 - Shrimp spp

Selective breeding in aquaculture

High fecundity and external fertilisation

- Advantageous for genetics and genome editing research and application
 - Easy access to large numbers of embryos for editing

- Large-scale experimental disease challenges feasible
- Rapid dissemination of improved / edited germplasm

Target traits for improvement

- Infectious disease presents a major threat to aquaculture
 - Major economic, animal welfare, and environmental concern
 - Vaccination, biosecurity or other control measures often infeasible
- Breeding and genome editing technologies have high potential to improve disease resistance in aquaculture
- Other target traits
 - Production efficiency; growth, FCR
 - Adaptation to vegetarian diets
- · S
 - Sterility and monosex populations

Development of in vivo editing

- Methods of *in vivo* CRISPR editing in aquaculture species
 - Species-dependent, but generally embryo microinjection
 - First examples in Atlantic salmon focussed on sterility traits

Large fish embryos for hand-held microinjection

Knockout of *dnd* gene to induce germ cell ablation and sterility in salmon. Concurrent knockout of *slc45a2*, albinos as a 'tracer' (*Wargelius et al. 2016*)

Development of *in vivo* editing

ROSLN

Gratacap et al. (2019), Trends in Genetics, 35:672-84

• CRISPR editing successfully applied in diverse aqua species

Species	Target gene ^a	Trait of interest
Atlantic salmon, Salmo salar	tyr/slc45a2	Pigmentation
	dnd	Sterility
	elov-2	Omega-3 metabolism
Tilapia, Oreochromis niloticus	dmrt1/nanaos2-3/foxl2	Reproduction
	gsdf	Reproduction
	aldh1a2/cyp26a1	Reproduction
	sf-1	Reproduction
	dmrt6	Reproduction
	amhy	Reproduction
	wt1a/wt1b	Reproduction
Sea bream, Sparus aurata	mstn	Growth
Channel catfish, Ictalarus punctatus	mstn	Growth
	ticam1/rbl	Immunity
	LH	Sterility
Southern catfish, Silurus meridionalis	cyp26a1	Germ cell development
Common carp, Cyprinus carpio	sp7a/sp7b/mstn(ba)	Muscle development
Rohu carp, Labeo rohita	TLR22	Immunity
Grass carp, Ctenopharyngodon idella	gcjam-a	Disease resistance
Northern Chinese lamprey, Lethenteron morii	slc24a5/kctd10/wee1/soxe2/wnt7b	Pigmentation/development
Rainbow trout, Oncorhynchus mykiss	igfbp-2b1/2b2	Growth
Pacific oyster, Crassostrea gigas	mstn	Growth

BBSRC

Development of in vivo editing

- Methods of *in vivo* CRISPR editing in aquaculture species
 - Most studies have focused on gene knockout using NHEJ repair
 - Homology-directed repair has been successfully trialled

Knockout with NHEJ and knock-in with HDR achieved in salmon Efficiency, survival, mosaicism ongoing challenges to be tackled

Development of *in vitro* editing

Gratacap et al. (2020), Mar Biotechnol 22, 717–724

- Cell line editing needs development in aquaculture species
 - Paucity of cell lines and lack of methods for cell line editing
 - Progress recently, esp RNP CRISPR approaches in salmonid cell lines

Platforms to test edits before *in vivo* applications Suitability for pathogen challenges and CRISPR screens

Applications of genome editing

- Genome editing opens up possibilities to expedite genetic improvement in aquaculture species:
- ✓ Harnessing naturally-occurring variation:
 - Increase frequency or fix desirable alleles at existing QTL
 - **'Introgression' of alleles from different strains / species**

✓ Creating *de novo* mutations / alleles with desirable effects:

- Knowledge of the biology of the trait
- Genome-wide CRISPR screen approaches

Targeting naturally-occurring variants

 Genome editing to identify and utilise causative variants for QTL affecting production traits (e.g. disease resistance)

Targeting naturally-occurring variants

 Genome editing to transfer favourable alleles from different strains or species

Closely related species with divergent phenotypes

Creating *de novo* variants

Houston et al. (2020) Nat Rev Genet 21:389–409

• Creation and evaluation of *de novo* alleles with favourable effects on production traits

Research and translation priorities

- Improved methods of predicting functional variants is key
 - High quality reference genomes with functional annotation need development in most aquaculture species
- Improving techniques for reliable and efficient editing
 - Improved cell line models for *in vitro* targeted and genome-wide screens
 - Reducing F0 mosaicism for *in vivo* editing, alternative delivery methods

Editing germ cells in cell culture and surrogate broodstock technologies

Labelling & isolation of germ cells from donor broodstock

Culture and editing of germ cells

Transfer of edited germ cells to sterilised surrogate broodstock (intra or inter species)

Production of fully edited donor gametes and embryos

Integration of editing technologies with breeding programmes

Need for sterility of production stocks carrying edits

Future directions to application

- Huge potential to harness high fecundity for widespread delivery of edited strains to tackle production barriers
- Applications dependent on public and regulatory landscape

Challenge of public & regulatory acceptance

Acknowledgements

ROSLN

In particular: Yehwa Jin Remi Gratacap Diego Robledo Marina Mantsopoulou

Benchmark[®]

₩ ross.houston@roslin.ed.ac.uk

