

Genome editing in ruminants

Luiz Sergio A Camargo
Brazilian Agricultural Research Corporation
Embrapa Dairy Cattle
luiz.camargo@embrapa.br



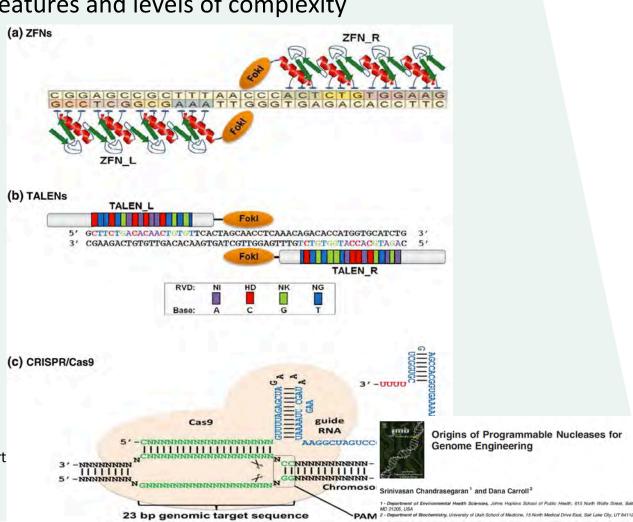
Genome editors

- Techniques that allow precise manipulation of the gene
 - Based on site-directed nucleases (SDN) to break the DNA
 - DNA sequence can be deleted, inserted or modified.

Similar a text editor

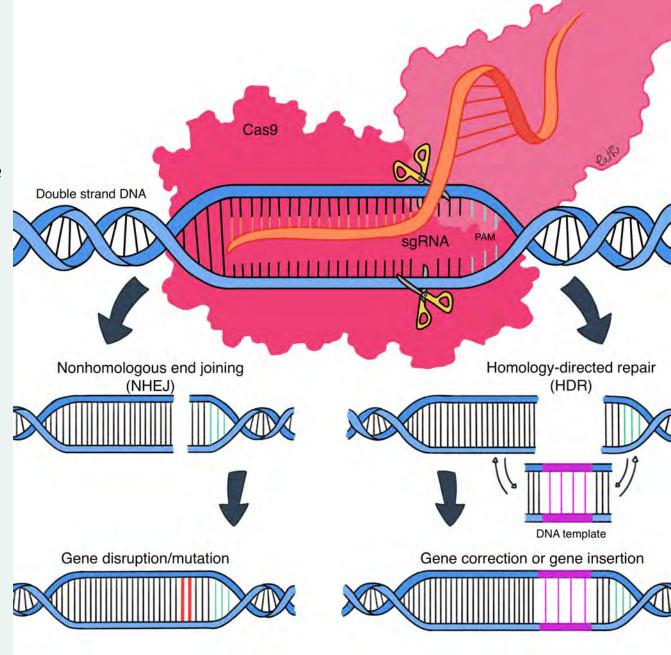
Genome editors

- Like text editors, there are different genome editors
 - With different features and levels of complexity

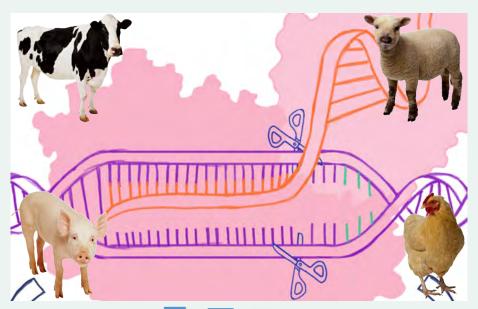

ZFNZinc finger nucleases

TALENs

Transcription activator-like effector nucleases


CRISPR/Cas9

Clustered regularly interspaced short palindromic repeats


How this work

- identifies the target sequence and the nuclease (Cas9) breaks the DNA double strand in a specific site of the genome (or single-strand break with Cas9 nickases).
- Broken strands can be repaired by nonhomologous end joining (NHEJ) or by homologous recombination (homologydirected repair – HDR)
 - Gene disruption
 - Gene correction (single or several bases) or gene addition

Genome editing in farm animals

Increase resistence to disease or parasites

Improve farm animal welfare

Improve livestock production

Genome editing in farm animals

- Increase the frequency of favorable trait-associated alleles;
- Promote the introgression of favorable alleles from other breeds (or species);
- Generate new favorable alleles

Tait-Burkard et al. Genome Biology (2018) 19:204 https://doi.org/10.1186/s13059-018-1583-1 Genome Biology

REVIEV

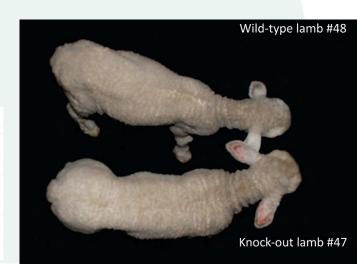
Open Access

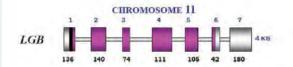
CrossMark

Livestock 2.0 – genome editing for fitter, healthier, and more productive farmed animals

Meat quality

- Myostatin restrain muscle growth
 - Some cattle breeds have natural mutations that causes loss-of-function
 - muscle hypertrophy called double-muscle
 - Superior carcasses (less bone and low fat)
 - leaner and tendered meat
- Knockout of myostatin
 - TALENS
 - Cattle (Nelore zebu) and sheep
 - CRISPR/Cas9
 - Sheep



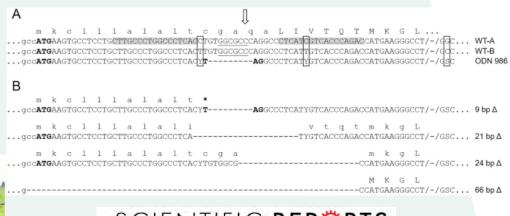

Transgenic Res (2015) 24:147-153 DOI 10.1007/s11248-014-9832-x

ORIGINAL PAPER

Genome edited sheep and cattle

Chris Proudfoot · Daniel F. Carlson · Rachel Huddart · Charles R. Long · Jane H. Prvor · Tim J. King · Simon G. Lillico · Alan J. Mileham · David G. McLaren · C. Bruce A. Whitelaw · Scott C. Fahrenkrug

Cow milk allergy


mbrapa

- Beta-lactoglobulin (BGL) is the major allergen in the cow milk
- Knock-out the BGL gene TALENs
 - Achieved by introducing INDELs downstream start codon

1602

- 9 and 21 pb deletions
- BGL-free milk

1601

BGL knockout

- CRISPR to insert indels in BGL gene
 - Target: exon 2
 - Two alleles: Al1 (WT) and Al2 monoallelic
 - mosaicism

sgRNA

Unpublished data


Wt- GTCCAGCAGGAGATGTCGCTGGCCGCCATGGCCAAGGAGTACCAAGTCCCCGCCACCTGG

CRISP-ID All-GTCCAGCAGGGAGATGTCGCTGGCCGCCATGGCCAAGGAGTACCAAGTCCCCGCCACCTGG

Al2-GTCCAGCAGGGAGATGTCGCGGGTCTACATGAACAAATAATACCAAGTCCCCTCTTCCTGG

Reverse strands 5'-3'

INTA and Universidad de San Martin

Heat tolerance: diluted coat color

- Holstein cattle: sensitive to high temperature black and white
 - Black coat can absorb more ligth, retaining more heat heat stress when under high temperature and humidity
 - 3 bp deletion into pre-melassomal protein 17 gene using CRISPR
 - Dilution of black coat color (pattern of grey and white no black areas) – may help to reduce heat stress

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.298950; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-MC-ND 4.0 International license.

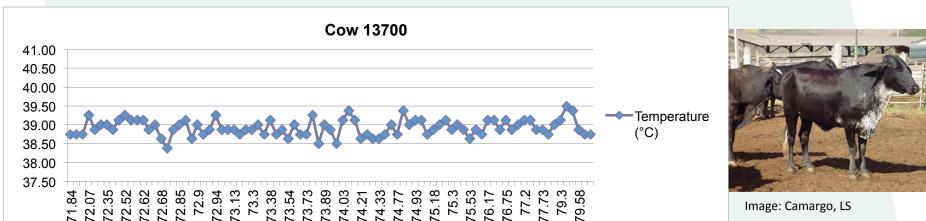
Holstein Friesian dairy cattle edited for diluted coat color as adaptation to climate change

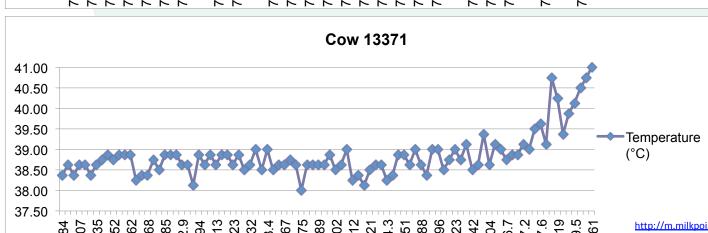
Laible, G.^{1,2,3*}, Cole, S-A.¹, Brophy, B.¹, Wei, J.¹, Leath, S.¹, Jivanji, S.⁴, Littlejohn, M.D.^{4,5} and Wells, D.N.¹

Heat tolerance: slick hair

- Animals with smooth coat and short hair:
 - can have a better management of body temperature
 - Mutation on prolactin receptor (exon 11) in criollo breeds in Central and
 South America heat-tolerant cows but low performance
 - Introduction of mutation using CRISPR in Angus cattle (heat- sensitive)

Caracu cows in Brazil


Enhancing thermotolerance in B. taurus cattle


- Bos indicus (zebu) cattle very tolerant to high temperature and humidity
 - Gir: zebu dairy breed
 - Polygenic trait
 - Genes and/or mutations involved in this process are still unknown

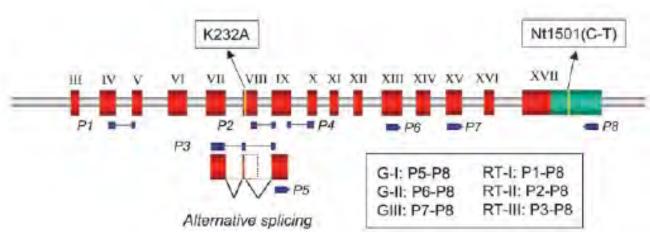
Enhancing thermotolerance in B. taurus cattle

Genome Wide Association studies with Girolando cattle (Gir x Holstein) – potential targets for thermoregulation

animal/vantagens-do-manejo-do-estresse-calorico-em-gadoleiteiro-86072n.aspx

Enhancing thermotolerance in B taurus cattle

 New targets (from Zebu cows) to edit the genome of European cattle raised in the tropics



Enhancing milk production in zebu cows

- Zebu cattle high tolerance to heat stress but low milk yield
- Alleles associated to milk yield in Holstein and Jersey cattle
 - Diacylglycerol o-acyltransferase 1 (DGAT1) gene triacylglycerol synthesis
 - GC>AA polymorphism (K232A) results in missense mutation
 - » Lysine > Alanine allele A

and functional confirmation of the causality IGAT1 K232A quantitative trait nucleotide in g milk yield and composition

Bernard Grisart**, Frédéric Farnir**, Latifa Karim*, Nadine Cambisano*, Jong-Joo Kim*, Alex Kvasz*, Myriam Mni*, Patricia Simon*, Jean-Marie Frére*, Wouter Connieters*, and Michel Georges**

Enhancing milk production in zebu cows

Online journal 1880-1676-668

Genetics and Molecular Research

2012-1676-688

Genetics and Molecular Research

- High frequency in Holstein cattle
- Low frequency in zebu cattle

DGAT1 K232A polymorphism in Brazilian cattle breeds

G.A. Lacorte¹, M.A. Machado², M.L. Martinez², A.L. Campos², R.P. Maciel², R.S. Verneque², R.L. Teodoro², M.G.C.D. Peixoto², M.R.S. Carvalho¹ and C.G. Fonseca¹

Table 2. K232A DGAT1 genotypic and allelic frequencies (%) including observed and expected heterozygosity.

Breed	Genotypic frequencies (%)				Allelic frequencies (%)		Heterozygosity (%)	
	KK	AK	AA	EP1	K	A	Observed	Expected
Gyr	94.0	4.0	2.0	0.06	96.0	4.0	4.0	7.0
Guzerat	100.0	0.0	0.0	~	100.0	0.0	0.0	0.0
Nellore	100.0	0.0	0.0	-	100.0	0.0	0.0	0.0
Red Sindhi	95.0	5.0	0.0	1.00	97.5	2.5	5.0	5.0
Holstein	14.0	26.0	60.0	0.03"	27.0	73.0	26.0	39.0
Gyr x Holstein Fl	30.0	62.0	8.0	0.04*	61.0	39.0	61.0	48.0

Exact probability for Hardy-Weinberg equilibrium testing (Haldane, 1954).

^{*}Significant for EP (<0.05).

Enhancing milk production in zebu cows

- Introgression of alleles associated to milk production
 - Increase the frequency of allele A in Gir cattle
 - contribute to improve milk yield of Zebu cows (Gir)

Holstein, Jersey images: CRV Lagoa Gir image: Camargo, LS

Challenges

- Improve the efficiency of gene editing
 - Increase the efficiency zygote transfection: procedures to replace cytoplasm injection
 - Increase the rate of INDELS and HDR (precise editing) in both alleles;
 - Reduce mosaicism
- Regulation
 - Different views of how to regulate genome editing in farm animals

WATURE METHODS I CORRESPONDENCE

REVIEW ARTICLE

WILEY Repolation in Compare laterals

Takeaway message

- Genome editing in ruminants
 - Can help to accelerate genetic improvement
 - Benefit farmers and consumers in different parts of the world
 - Animal welfare is a concern
 - Take longer than plants to succeed
 - Partnership

Acknowledgement

Thank you Mercy beaucoup Muito obrigado

