

Precision genome engineering in the chicken: The gap between science and market place

Mark Tizard, Arjun Challagulla, Kristie Jenkins, Anthony Keyburn, David Cahill & Tim Doran

IWRAB-II, Brasilia, 18-21 August 2014

CSIRO

www.csiro.au

- Our animal and the industry
- The industry issues we are aiming to tackle
- The technology we are using
- The progress we have made
- A brain teaser GM or not GM, that is the question
- Parting thoughts

Why the chicken?

- A model organism on the rise
- Land based production animal without peer
- 50 billion broilers per annum
- 70 million tonnes of egg products

FCE 1.4

FCE 2.2

FCE 7.0

FAO Statistics 2007

- Produced off less land area and with less water input
- Easier to recover production system in cases of natural disaster (climate change impacts)

Production traits being targeted with PGE

Influenza virus resilient poultry: dual benefit

- Reduced production losses
- Prevention of zoonotic spread

Sex manipulation or sex selection in poultry

- Redirecting sex differentiation
- Male for meat, female for eggs (!)
- Sex selection (for egg production)

Eggs for improved vaccine production

- Increased vaccine titre
- Removal of allergens

Modified traits in prawns

Major steps forward in chicken biotechnology

- Disabled retrovirus transformation lentivirus proviral integration
 - McGrew et al 2004, EMBO Reports
 - Primordial Germ Cell (PGC) culture and transfection
 - Direct injection reintroduction of PCGs, GFP birds

- Tol2 mini-transposon transposase mediated integration
 - Tyack et al 2013
 - Direct injection of DNA constructs
 - GFP birds

- Precision genome engineering with TALENs
 - J Y Han et al 2014, (embargoed high IF journal)
 - PGC culture, single allele KO of the egg allergen ovalbumin
- Next up: the CRISPR chicken...

Making transgenic chickens

- Steady progress for the "regulatability" of GM chickens
 - Disabled retro virus systems efficient and safe but raise concerns
 - Transposon based systems efficient and safe but random placement causes concerns
 - PGE systems early days efficient 10-15%, safe, precise, testable
- Transforming the germline
 - Primordial Germ Cell (PGC) culture
 - Transform the cells that will make ova and sperm in culture
 - Expensive and time consuming but efficient
 - Direct injection
 - Skilled but cheap and straightforward
 - Efficiency in assessment

Direct in vivo transfection of PGCs - EGFP chicken

- Direct injection of DNA constructs into embryo ED 2.5 seal and incubate
- Dissected gonads and whole embryos examined ED 7 and ED 14
- EGFP observed extensively throughout gonads of all embryos
- Chicken-Vasa antibody staining confirmed EGFP cells were PGCs
- EGFP expression in other cells throughout the embryo (e.g. heart and brain)

Direct in vivo transfection of PGCs – EGFP chicken

Table 1: Germline transmission and transgenic chick production

G0 Rooster #	Relative levels of miniTol in semen*	Offspring Hatched	Transgenic offspring	Percentage transgenesis	
1	0		THE REAL PROPERTY.		
2	0.100				
3	0		La S		
4	0.053				
5	0				
6	0				
7	0		STATE OF THE PARTY OF		
8	0.109	95			
9	0.145	131		3 60 C C C C C C C C C C C C C C C C C C	
10	0				
11	0.221	193		The state of the s	

^{*}The relative levels of integrated miniTol DNA in semen were calculated by comparing the mean Ct values from genomic and miniTol qPCR from two semen samples.

The Precision Genome Engineering toolkit

- "Meganulceases" cuts DNA but has a large recognition sequence
- Systems for very tightly specific DNA sequence recognition
 - Recognising > 20bp sequences (sometimes 36-40 bp)
 - Perfect recognition should yield a single cut in a 3 billion bp genome

Our focus currently with CRISPR

- ZFN and TALEN customised paired proteins that work together to seek the genome target
- CRISPR (RGEN) a single common protein programmed by a short specific RNA

Image: Stephen Dixon, MIT News website

Image: Bang Wong, MIT News website

- First patent has been awarded to Broad Institute,
 MIT, Feng Zhang, WO2014093661A2 Dec 2012
- UC Berkley, Jennifer Doudna, WO2013176772 A1 -May 2012

"Hitch-hiker" development

The concept

- Use RNA interference (RNAi) to control influenza virus infection
- Couple anti-viral hairpin RNA (RNAi) to natural miRNA expression
- Parallel processing hitch-hiking

PGE to achieve the goal

- Placing single or multiple hairpins precisely in the genome
- Use of ZFN
- Generation of functional cell lines with engineered genomes
- Great work by an excellent PhD student

miR-107 and pantothenate kinase 1 (CoA biosynthesis)

What the hitch-hiked intron looks like

 Retain whole of intron secondary structure (retain native activity – keep it natural)

- Hitch-hiked (GM)
- It works in cells can it be translated to a living animal?

Summary of PGE progress:

 Successful engineering of the chicken genome with ZFN

 Successful transformation of PGCs by Direct Injection to generate transgenic chicken (resulting in GFP chicken)

- Adoption of CRISPR confirmed functional knockout of GFP in chicken cell line
- CRISPR combined with Direct Injection to knock-out GFP and replace with Red Fluorescent Protein...

PGE current ideas and future activities: Knock-in, knock-out, knock-about

Knock-in

- RNAi transgenes e.g. Hitch-hiker
- Protein coding genes
- Recombinant (hybrid) live virus vaccine manufacture

Knock-out

- Real "model" of disease systems and development (IL-6)
- Improved vaccine growth in eggs (interferon receptor) (NIH grant)

Knock-about

- Gene editing e.g. allergen modification
- Virus receptor modification
- Rational SNP integration

The brain teaser

- To a scientist and a regulator this may be very clear...
 but with fully opposing conclusions
- The conundrum, the dilemma
- When is a GMO not a GMO? or Can a GMO produce a non-GMO?

Background - the industry issue:

- Egg production only females lay eggs (duh)
- But the genetics of the quality traits are so precise that males from layer-lines of birds are poor producers of meat – therefore culled
- Expensive process and inhibits uptake of in ovo vaccine technologies attracts negative public perceptions
- Objective remove males before they hatch

PGE: For sex selection of egg laying chicken

PGE for sex selection of egg laying chicken

Summary: the impact of our PGE in poultry

- Presents a conundrum sex selection: is the animal GM? is the food product GM?
- Our first GMO regulation challenge may be via PGE to introduce 300 bp precisely placed change (hitch-hiker RNAi viral RNAi)
 - no protein
 - no regulatory sequence
 - natural processing for biological effect
- Use of PGE paves the way for single nucleotide changes
- What (if any) benefit does PGE bring in terms of how these animals and their products will be regulated and adopted?

Acknowledgements

CSIRO Biosecurity Flagship Australian Animal Health Laboratory

- •Tim Doran
- Kristie Jenkins
- •Terri O'Neil
- Terry Wise
- Kirsten Morris
- Matthew Bruce
- Robert Moore
- Anthony Keyburn
- •John Lowenthal
- Sandy Matheson
- •Susanne Wilson
- Mark Ford

Dept of Microbiology and Immunology College of Veterinary Medicine Cornell University, USA

Prof Karel A. Schat

Murdoch Children's Research Institute, The University of Melbourne

- Prof Andrew Sinclair
- Craig Smith
- •Luke Lambeth

Seoul National University, Korea

- Prof Jae Han
- •Tae Min Kim
- •Jin G. Jung

www.cstro.au

Date:

Thursday 9 October 2014 to Friday 10 October 2014

Time:

Commences 9:00am

Location:

AAHL, Corner of Port Arlington and Boundary Roads, East Geelong

RSVP before:

Monday 29 September 2014

OECD - 9-10th October PGE - 16-17th October

Mark Tizard - Team Leader - Genome Engineering CSIRO Biosecurity Flagship Australian Animal Health Laboratory +61 3 5227 5753

e mark.tizard@csiro.au

CSIRO ANIMAL, FOOD AND HEALTH SCIENCE/BIOSECURITY FLAGSHIP www.csiro.au

