Argentina maintained its ranking as the third largest producer of biotech crops in the world in 2016, occupying 13% of the global biotech crop hectarage.

A total of 23.8 million hectares of biotech crops were planted in Argentina in 2016. Of this, 18.7 million hectares were biotech soybean, an all time high of 4.7 million hectares of biotech maize, and 0.4 million hectares were biotech cotton.

The 18.7 million hectares of biotech soybean in Argentina in 2016 comprised of 16.2 million hectares HT and 2.5 million hectares stacked IR/HT.

Of the 4.9 million hectares biotech maize in Argentina in 2016, 78% or 3.7 million hectares were stacked IR/HT.

A total of 400,000 hectares was planted to biotech cotton in 2016, a 95% adoption. It is composed of 150,000 hectares IT/HT and 23,000 hectares HT cotton.

Argentina’s benefits from biotech crops from 1996 to 2015 was estimated at ~US$21.1 billion, and the benefits for 2015 alone was US$1.2 billion.

BIOTECH CROP ADOPTION

Secretary of Agriculture, Livestock and Fisheries Gabriel Delgado authorized the marketing of a potato event (TIC-AR233-5) resistant to PVY (Potato Virus Y) throughout the national territory on October 6, 2015. Potato farmers will benefit from the virus resistance which infects non-GM plants by up to 80%. The biotech potato was developed by Fernando Bravo Almonacid from the National Research Council of Argentina, CONICET at the Institute for Research on Genetic Engineering and Molecular Biology (INGEBI, CONICET-UBA) with Alejandro Mentaberry.

Drought resistant wheat is being developed in Argentina by researchers at the Instituto Nacional de Tecnología Agropecuaria (INTA) in collaboration with Eduardo
In 2016, the slight decline in hectareage of biotech crops in Argentina was largely due to substantial reduction in soybean area and minimally on cotton area. The adverse weather condition affected wheat planting, as well as the second soybean planting after wheat. On the other hand, increased maize planting was mainly due to favorable weather conditions.

With almost maximum adoption of biotech crops in Argentina of 97%, expansion of biotech crop commercialization can be achieved using new crops and traits.

CONCLUSION

In 2016, the slight decline in hectarage of biotech crops in Argentina was largely due to substantial reduction in soybean area and minimally on cotton area. The adverse weather condition affected wheat planting, as well as the second soybean planting after wheat. On the other hand, increased maize planting was mainly due to favorable weather conditions. With almost maximum adoption of biotech crops in Argentina of 97%, expansion of biotech crop commercialization can be achieved using new crops and traits.

SOURCE

BENEFITS FROM BIOTECH CROPS IN ARGENTINA

Recent data on the benefits from biotech crops estimates that Argentina has enhanced farm income from biotech crops by US$21.1 billion in the first 20 years of commercialization of biotech crops 1996 to 2015, and the benefits for 2015 alone were estimated at ~US$1.2 billion (Brookes and Barfoot, 2017).

A comprehensive study by Trigo (2016) on the benefits of biotech crops in Argentina for the 20 years of its commercialization (1996-2016) indicated a gross benefit of US$126.97 million, an unprecedented 75% increase in benefits from the previous US$72,363 million in 1996-2010.

Blumwald of University of California Davis Department of Plant Sciences. The team used a cytokinin synthesis gene under a water stress inducible promoter to confer drought resistance in wheat. Regenerated plants remain green and do not enter into senescence during drought stress (Valorsoja, 6 October 2015).

Also in the pipeline is a glyphosate tolerant sugarcane being developed at the Obispo Colombres Agricultural Station.

There are 47 biotech crop products approved for commercial planting in Argentina from 1996 to 2016: 35 maize events, 8 soybean events, and 4 cotton events.

In 2016, 6 maize events were approved for food, feed, and cultivation in Argentina. These events are: IR stacked MON810 x MIR162; IR/HT stacked TC1507 x MON810 x MIR162 x NK603 and its combinations: MIR162 x NK603, TC1507 x MON810 x MIR162, TC1507 x MIR162 x NK603, and MON810 x MIR162 x NK603.

For more information, contact:

ISAAA SEAsiaCenter
GS Khush Hall, IRRI
Los Baños, Laguna 4031 Philippines
Telefax: +63 49 5367216
Email: knowledge.center@isaaa.org

www.isaaa.org