Triple Gene Construct Confers Insect Resistance and Herbicide Tolerance in Tobacco

Insect pest complex, cotton leaf curl disease (CLCuD) and weeds pose major threat to cotton production worldwide. To address these problems, the National Institute for Biotechnology and Genetic Engineering (NIGBE) developed a triple gene construct harboring Cry1Ac, Cry2Ab and EPSPS for plant transformation to confer resistance to lepidopterans and glyphosate herbicides.

The team used tobacco (Nicotiana benthamiana) as a model system for characterization of this triple gene construct. In the six transgenic tobacco lines, assays confirm the successful protein expression of all three genes.

Efficacy of Cry1Ac and Cry2Ab was evaluated through insect bioassay using armyworm (Spodoptera littoralis). The transgenic tobacco plants showed significant insect mortality as compared to control plants. Three of the six tested transgenic lines exhibited 100% mortality of armyworm, while the three other lines had 40-86% mortality.

This study showed that the triple gene construct can be used to transform crops, including cotton, for the development of insect resistant and herbicide tolerant transgenic plants.

For more on this promising study, read the article in Frontiers in Plant Science.


 

This article is part of the Crop Biotech Update, a weekly summary of world developments in agri-biotech for developing countries, produced by the Global Knowledge Center on Crop Biotechnology, International Service for the Aquisition of Agri-Biotech Applications SEAsiaCenter (ISAAA)

Subscribe to Crop Biotech Update Newsletter
Crop Biotech Update Archive
Crop Biotech Update RSS
Biofuels Supplement RSS

Article Search: