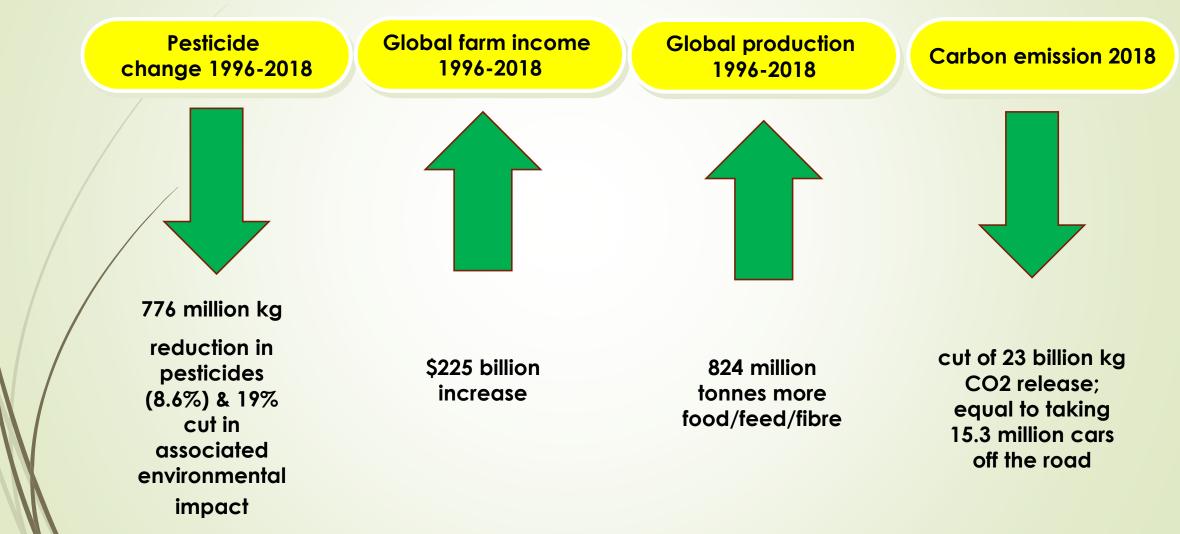
Global Impact of Biotech Crops: economic and environmental effects 1996-2018

Graham Brookes PG Economics Ltd UK

Background

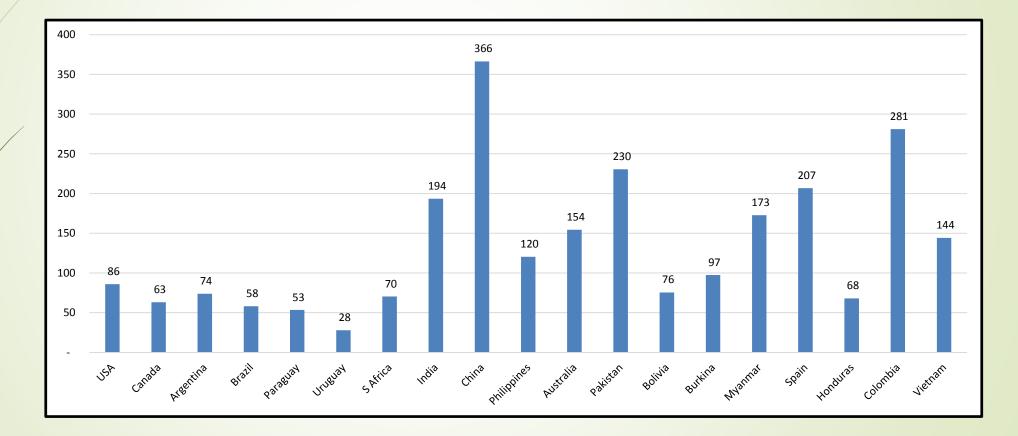
- 14th annual review of global GM crop impacts
- Authors of more than 30 papers on GM crop impacts in peer review journals
 - Current review in 2 open access papers in journal GM Crops. <u>https://www.tandfonline.com/doi/full/10.1080/21645698.2020.1779574</u>
 - https://www.tandfonline.com/doi/full/10.1080/21645698.2020.1773198
- Full report available at <u>www.pgeconomics.co.uk</u>

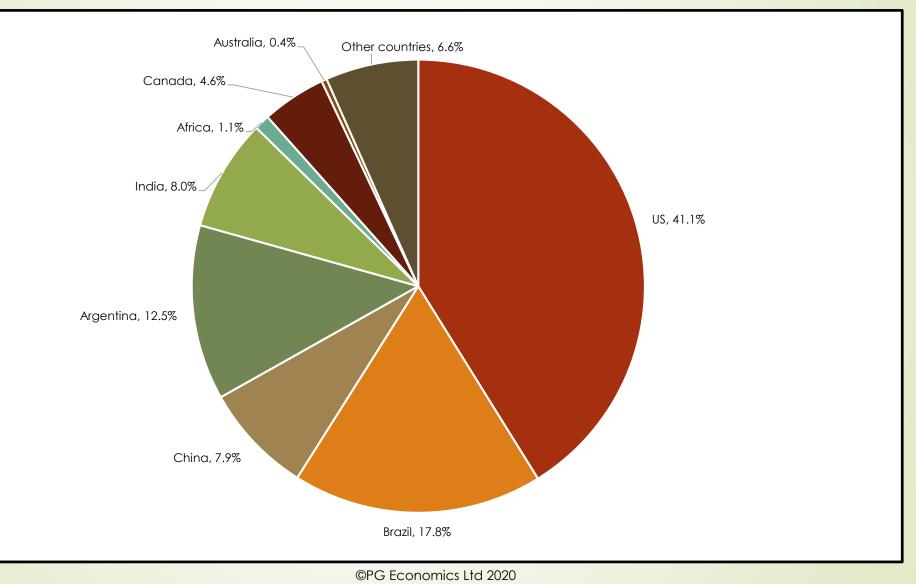

Coverage

- Cumulative impact: 1996-2018
- Farm income and productivity impacts: focuses on farm income, yield, production
- Environmental impact analysis covering pesticide spray changes and associated environmental impact
- Environmental impact analysis: greenhouse gas emissions

Methodology

- Review and use of considerable impact literature plus own analysis – a lot of this is in peer reviewed journals
- Uses current prices, exchange rates and yields (for each year) and update of key costs each year: gives dynamic element to analysis
- Review of pesticide usage (volumes used) or typical GM versus conventional treatments
- Use of Environmental Impact Quotient (EIQ) indicator
- Review of literature on carbon impacts fuel changes and soil carbon


Summary of key findings

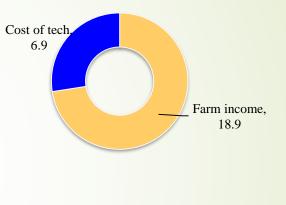

Farm income gains: highlights

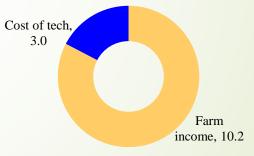
- Total farm income benefit 2018 \$19 billion
- Equal to adding 5.8% to value of global production of corn, canola, cotton and soybeans
- Total farm income gain: 1996-2018: \$225 billion
- Average gain/hectare (1996-2018): \$97
- Income share (1996-2018): 48% developed and 52% developing countries

Average farm income gain 1996-2018 by country (\$/ha)

Farm income gains 1996-2018 by country (US \$)

Other farm level benefits

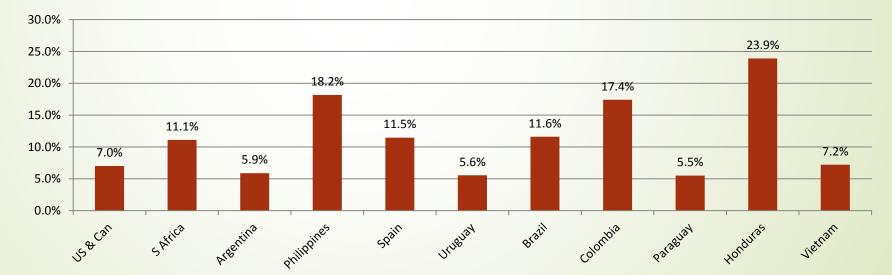

	GM HT crops	GM IR crops
/	Increased management flexibility/convenience	Production risk management tool
	Facilitation of no till practices	Machinery and energy cost savings
	Cleaner crops = lower harvest cost and quality bonus	Yield gains for non GM crops (reduced general pest levels)
	and the second the second	Convenience benefit
		Improved crop quality
		Improved health and safety for farmers/workers
In US these benefits valued at \$17 billion 1996-2018		


Cost of accessing the technology (\$billion) 2018

Distribution of total trait benefit: all (tech cost 27%) – every \$1 invested in seed = \$3.75 in extra income

 Distribution of benefit: developing countries (tech cost 23%) every \$1 invested in seed = \$4.42 in extra income

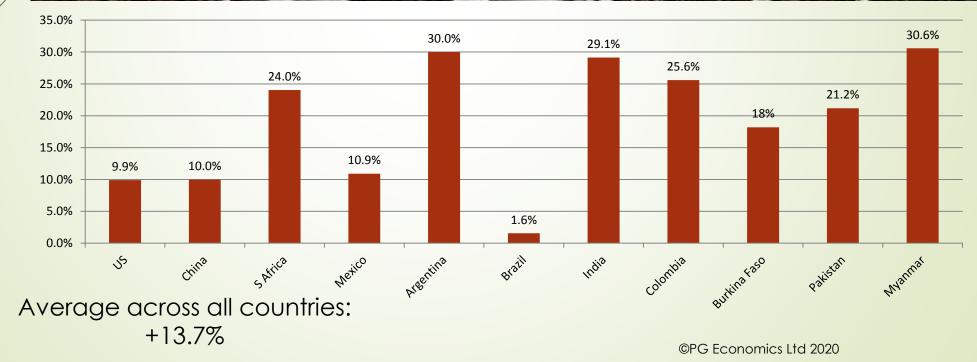
Cost of tech goes to seed supply chain (sellers of seed to farmers, seed multipliers, plant breeders, distributors & tech providers)

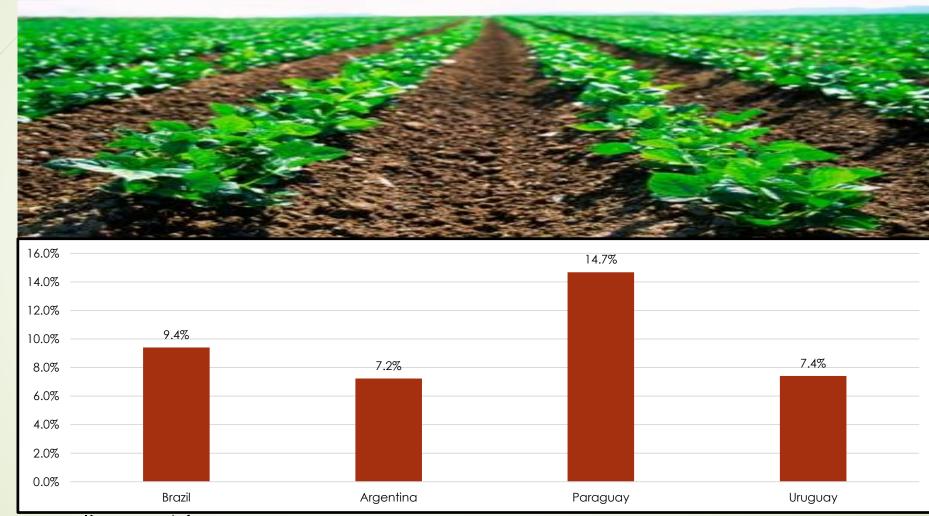


Yield gains versus cost savings

- 72% (\$162 billion) of total farm income gain due to yield gains 1996-2018
- Remaining gains (\$63 billion) from cost savings
- Yield gains mainly from GM IR technology (70%) and cost savings mainly from GM HT technology (90%)
- Yield gains greatest in developing countries and cost savings mainly in developed countries

IR corn: average yield increase 1996-2018



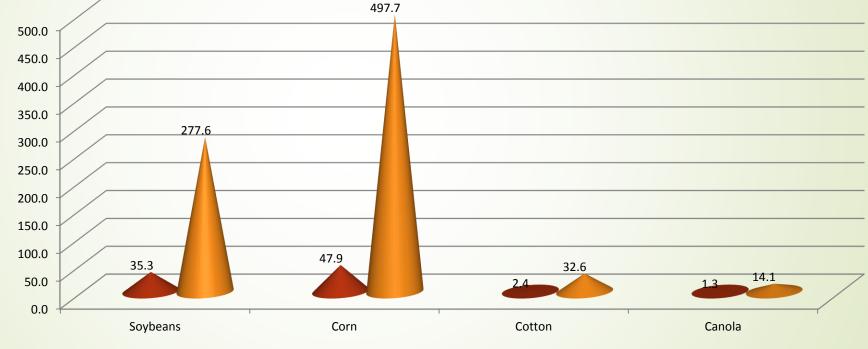

Average across all countries: +16.5%

IR cotton: average yield increase 1996-2018

IR soybeans: average yield increase 2013-2018

Average across all countries: +9.5%

HT traits: yield and production effects



Trait/country	Yield/production effect
HT soy: Romania, Mexico and Bolivia	+23%, +5% and +15% respectively on yield
HT soy: 2 nd generation: US and Canada	+9.3% yield
HT soy Argentina and Paraguay	Facilitation of 2 nd crop soy after wheat: equal to +23% and +15% respectively to production level
HT corn: Argentina, Brazil, Philippines and Vietnam	+10%, +3.7%, 5.3% and +5% respectively on yield
HT cotton: Mexico, Colombia and Brazil	+13%, +3.6% and +1.6% respectively on yield
HT canola: US, Canada and Australia	+2.1%, +6.5% and +9.5% respectively on yield

Additional crop production arising from positive yield effects of biotech traits 1996-2018 (million tonnes)

2018 1996-2018

Additional conventional area required if biotech not used (m ha)

	2018
Soybeans	12.3
Maize	8.1
Cotton	3.1
Canola	0.7
Total	24.2 equal to 38% of cropping area of Brazil

Focus on India: IR cotton

Issue	Impact
Introduction	2002
% of crop using technology (2018)	95%
Yield impact	+29%
Average farm income gain (\$/ha)	193.56
Average return on investment - \$/ha extra income per extra \$1 spent on seed	12.95
Total farm income gain \$ billion(2002- 2018)	24.31
Production impact 2002-2018 (million tonnes lint)	14.73

Source: Brookes and Barfoot 2020

Focus on Vietnam: stacked corn

Issue	Impact
Introduction	2015
% of crop using technology (2019)	10.2%
Yield impact	+15.2% to +30.4%
Average farm income gain (\$/ha)	195.67 to 329.75
Average return on investment - \$/ha extra income per extra \$1 spent on seed	6.84 to 12.55
Total farm income gain \$ million(2015- 2019)	+43.8 to +74.1
Production impact 2015-2019 (million tonnes)	+0.16 to +0.32

Source: Brookes and Dinh 2020, Brookes and Barfoot 2020 Note: analysis to 2019 included based on Brookes and Dinh 2020

Impact on pesticide use

- Since 1996, use of pesticides down by 776 million kg(-8.6%, equivalent to 1.6 times annual pesticide active ingredient use on crops in China). Associated environmental impact (EIQ indicator)-19%
- Largest environmental gains from GM IR cotton: savings of 331 million kg insecticide use (-32%) and 35% reduction in associated environmental impact (EIQ measure) of insecticides
- Of which environmental gains from GM IR cotton in India: savings of 137 million kg insecticide use (34%) and 43% reduction in associated environmental impact (EIQ measure) of insecticides

Impact on greenhouse gas emissions

Lower GHG emissions: 2 main sources:

- Reduced fuel use (less spraying and soil cultivation)
- GM HT crops facilitate no till systems = less soil preparation = additional soil carbon storage

Reduced GHG emissions: 2018

- Reduced fuel use (less spraying and tillage) = 2.4 billion kg less carbon dioxide
- Facilitation of no/low till systems = 20.6 billion kg of carbon dioxide not released into atmosphere
- Total 23 billion kg


Equivalent to removing 15.3 million cars — 48% of cars registered in the United Kingdom — from the road for one year

Any negatives?

- Over reliance on glyphosate by some farmers in North/South America (with HT crops) contributed to weed resistance problems – farmers had to adapt and change weed control systems resulting in increased herbicide use and higher cost compared to 15 years ago BUT:
 - Weed resistance problems and increased herbicide use also a trend in conventional crops
 - Environmental profile of herbicides used with HT crops remains better than equivalent on conventional crops
 - HT crops remain more profitable than conventional alternative

Summary of key global findings

Concluding comments

- GM IR technology: higher yields, less production risk, decreased insecticide use, higher incomes, more reliable food supply, more environmentally-friendly farming methods
- GM HT technology: higher incomes, extra production, facilitation of adoption of more sustainable farming systems (eg, no till), carbon emission savings
- Both technologies: important contributions to increasing world production of soybeans, corn, canola and cotton – results in less pressure to bring new land into agriculture
- Newer traits: drought tolerant (corn), fungal resistant potatoes and insect resistant (brinjal) now beginning to contribute positively

Concluding comments

- After 23 years of widespread use there is a considerable amount of <u>consistent</u> evidence in peer reviewed literature on the impact of GM crop technology
- This work adds to this literature
- Papers from this work available on open access at GM Food and Crops journal.

https://www.tandfonline.com/doi/full/10.1080/21645698.2020.1779574

https://www.tandfonline.com/doi/full/10.1080/21645698.2020.1773198

https://www.tandfonline.com/doi/full/10.1080/21645698.2020.1816800

I encourage you to read these papers and references cited in them and draw your own conclusions